Analytical and Bioanalytical Chemistry

, Volume 403, Issue 3, pp 643–650 | Cite as

Characterization of non-stoichiometric co-sputtered Ba0.6Sr0.4(Ti1 − xFex)1 + xO3 − δ thin films for tunable passive microwave applications

  • F. Stemme
  • H. Geßwein
  • M. D. Drahus
  • B. Holländer
  • C. Azucena
  • J. R. Binder
  • R.-A. Eichel
  • J. Haußelt
  • M. Bruns
Original Paper


The fabrication of novel iron-doped barium strontium titanate thin films by means of radio frequency (RF) magnetron co-sputtering is shown. Investigations of the elemental composition and the dopant distribution in the thin films obtained by X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and time-of-flight secondary ion mass spectroscopy reveal a homogeneous dopant concentration throughout the thin film. The incorporation of the iron dopant and the temperature-dependent evolution of the crystal structure and morphology are analyzed by electron paramagnetic resonance spectroscopy, X-ray diffraction, Raman spectroscopy, atomic force microscopy, and scanning electron microscopy. In summary, these results emphasize the RF magnetron co-sputter process as a versatile way to fabricate doped thin films.


Cross section of the RF magnetron co-sputter setup and the X-ray phototelectron spectroscopy iron spectrum of a co-sputtered iron doped Barium strontium titanate thin film


XPS XRD EPR RF magnetron co-sputtering BST thin film 



The authors gratefully acknowledge Mrs. V. Hermann and Mr. U. Geckle, KIT, for the assistance during the experimental work and like to thank Dr. H. H. Belz, ThermoFisher Scientific GmbH, Dreieich, Germany, for the Raman measurements, as well as Dr. Peter Jakes for experimental support and many helpful discussions.


  1. 1.
    Kozyrev A et al (1998) Microw. Symp. Dig.:985Google Scholar
  2. 2.
    Tombak A et al (2003) IEEE Trans Microw Theor Tech 51(2):462CrossRefGoogle Scholar
  3. 3.
    Scheele P et al (2005) Micro Symp Dig: 6500Google Scholar
  4. 4.
    Horikawa T et al (1994) IEEE Trans Electron E77-C:385Google Scholar
  5. 5.
    Kim TS, Oh MH, Kim CH (1995) Thin Solid Films 254:273CrossRefGoogle Scholar
  6. 6.
    Qadri SB et al (1995) Appl Phys Lett 66:1605CrossRefGoogle Scholar
  7. 7.
    Tahan DM, Safari A, Klein LC (1996) J Am Ceram Soc 79:1593CrossRefGoogle Scholar
  8. 8.
    Gao Y, Tran T, Alluri P (1999) Appl Phys Lett 75:415CrossRefGoogle Scholar
  9. 9.
    Lee SY, Tseng TY (2003) Appl Phys Lett 80:1797CrossRefGoogle Scholar
  10. 10.
    Chen SY, Wang HW, Huang LC (2001) Jpn J Appl Phys 40:4974CrossRefGoogle Scholar
  11. 11.
    Saha S, Krupanidhi SB (2001) J Appl Phys 90:1250CrossRefGoogle Scholar
  12. 12.
    Ahn KH, Baik S, Kim SS (2002) J Appl Phys 92:2651CrossRefGoogle Scholar
  13. 13.
    Saha S, Krupanidhi SB (2011) Appl Phys Lett 79:111CrossRefGoogle Scholar
  14. 14.
    Imai K, Takeno S, Nakamura K (2002) Jpn J Appl Phys 41:6060CrossRefGoogle Scholar
  15. 15.
    Giere A et al (2008) Frequenz 62:47CrossRefGoogle Scholar
  16. 16.
    Su B et al (2002) J Electrocer 9:111CrossRefGoogle Scholar
  17. 17.
    Lutz H, Bruns M, Link F, Baumann H (1998) Thin Solid Films 332:230CrossRefGoogle Scholar
  18. 18.
    Lutz H, Bruns M, Link F, Baumann H (1999) Surf Coat Tech 116–119:419CrossRefGoogle Scholar
  19. 19.
    Kormunda M, Pavlik J, Mackova A, Malinski P (2010) Surf Coat Tech 205:120CrossRefGoogle Scholar
  20. 20.
    Parry KL et al (2006) Surf Interface Anal 38:1497CrossRefGoogle Scholar
  21. 21.
    Scofield JH (1976) J Electron Spectr Relat Phen 8:129CrossRefGoogle Scholar
  22. 22.
    Tanuma S, Powell CJ, Penn DR (1994) Surf Interface Anal 21:165CrossRefGoogle Scholar
  23. 23.
    Holländer B et al. (2000) Nucl Instr And Meth. In: Phys Res B 161–163:227Google Scholar
  24. 24.
    Doolittle LR (1985) Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms 9:344CrossRefGoogle Scholar
  25. 25.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, MinnesotaGoogle Scholar
  26. 26.
    Viviani M et al (1999) J Eur Ceram Soc 19:1047CrossRefGoogle Scholar
  27. 27.
    Miot C et al (1997) J Mater Res 12:2388CrossRefGoogle Scholar
  28. 28.
    Hewitt RW, Winograd N (1980) J Appl Phys 51:2620CrossRefGoogle Scholar
  29. 29.
    Fujisaki Y, Shimamoto Y, Matsui Y (1999) Jpn J Appl Phys Part 2 38: L52Google Scholar
  30. 30.
    Li XL et al (2005) Appl Phys Lett 87:222905CrossRefGoogle Scholar
  31. 31.
    Craciun V, Singh RK (2000) Appl Phys Lett 76:1932CrossRefGoogle Scholar
  32. 32.
    Fukuda Y et al (1989) Phys Rev B 39:11494CrossRefGoogle Scholar
  33. 33.
    Meyer HM III et al (1989) Phys Rev B 38:6500CrossRefGoogle Scholar
  34. 34.
    Sosulnikov MI, Teterin YA (1992) J Elec Spec Phen 59:111CrossRefGoogle Scholar
  35. 35.
    Brundel CR, Chuang TJ, Wandelt K (1977) Surf Sci 68:459CrossRefGoogle Scholar
  36. 36.
    Eichel RA (2011) Phys Chem Chem Phys 13:368–384CrossRefGoogle Scholar
  37. 37.
    Drahus MD, Jakes P, Erdem E, Eichel RA (2011) Solid State Ionics 184:47–51CrossRefGoogle Scholar
  38. 38.
    Meštric H, Eichel RA, Kloss T et al (2005) Phys Rev B 71:134109CrossRefGoogle Scholar
  39. 39.
    Óvári L, Kiss J (2006) Appl Surf Sci 252:8624CrossRefGoogle Scholar
  40. 40.
    Schafranek R et al (2009) J Eur Ceram Soc 29:1433CrossRefGoogle Scholar
  41. 41.
    Yuzyuk YI, Alyoshin VA, Zakharachenko IN (2002) Phys Rev B 65:134107CrossRefGoogle Scholar
  42. 42.
    Kuo SY, Liao WY, Hsieh WF (2001) Phys Rev B 64:224103CrossRefGoogle Scholar
  43. 43.
    Cao LZ et al (2006) J Phys D 39:2819CrossRefGoogle Scholar
  44. 44.
    Mandelbrot B (1982) The fractal geometry of nature. Freeman, New YorkGoogle Scholar
  45. 45.
    Tay ST et al (2000) J Appl Phys 88:5928CrossRefGoogle Scholar
  46. 46.
    Fang TH et al (2006) Mat Sci Eng A426:157Google Scholar
  47. 47.
    Venkata Saravanan K, Ghanashyam Krishna M, James Raju KC (2009) J Appl Phys 106:114102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • F. Stemme
    • 1
    • 5
  • H. Geßwein
    • 1
  • M. D. Drahus
    • 3
  • B. Holländer
    • 4
  • C. Azucena
    • 2
  • J. R. Binder
    • 1
  • R.-A. Eichel
    • 3
  • J. Haußelt
    • 1
    • 5
  • M. Bruns
    • 1
  1. 1.Institute for Applied Materials (IAM-WPT)Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  2. 2.Institute of Functional Interfaces (IFG)Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  3. 3.Institut für Physikalische Chemie IUniversität FreiburgFreiburgGermany
  4. 4.Peter Grünberg Institute (PGI-9)Forschungszentrum JülichJülichGermany
  5. 5.Institute for Microsystem Technology (IMTEK)University of FreiburgFreiburgGermany

Personalised recommendations