Analytical and Bioanalytical Chemistry

, Volume 402, Issue 5, pp 1773–1784 | Cite as

Electrochemical plasmonic sensors

  • Andreas B. Dahlin
  • Bernd Dielacher
  • Prayanka Rajendran
  • Kaori Sugihara
  • Takumi Sannomiya
  • Marcy Zenobi-Wong
  • Janos Vörös
Review

Abstract

The enormous progress of nanotechnology during the last decade has made it possible to fabricate a great variety of nanostructures. On the nanoscale, metals exhibit special electrical and optical properties, which can be utilized for novel applications. In particular, plasmonic sensors including both the established technique of surface plasmon resonance and more recent nanoplasmonic sensors, have recently attracted much attention. However, some of the simplest and most successful sensors, such as the glucose biosensor, are based on electrical readout. In this review we describe the implementation of electrochemistry with plasmonic nanostructures for combined electrical and optical signal transduction. We highlight results from different types of metallic nanostructures such as nanoparticles, nanowires, nanoholes or simply films of nanoscale thickness. We briefly give an overview of their optical properties and discuss implementation of electrochemical methods. In particular, we review studies on how electrochemical potentials influence the plasmon resonances in different nanostructures, as this type of fundamental understanding is necessary for successful combination of the methods. Although several combined platforms exist, many are not yet in use as sensors partly because of the complicated effects from electrochemical potentials on plasmon resonances. Yet, there are clearly promising aspects of these sensor combinations and we conclude this review by discussing the advantages of synchronized electrical and optical readout, illustrating the versatility of these technologies.

Keywords

Plasmon Electrochemistry Nanostructure Sensor Electrical Optical 

References

  1. 1.
    Drude P (1900) Ann Phys Berl 1566–613Google Scholar
  2. 2.
    Rapp BE, Gruhl FJ, Lange K (2010) Anal Bioanal Chem 398:2403–2412CrossRefGoogle Scholar
  3. 3.
    Lee S-W, Lee K-S, Ahn J, Lee J-J, Kim M-G, Shin Y-B (2011) ACS Nano 5:897–904CrossRefGoogle Scholar
  4. 4.
    Lyon LA, Musick MD, Natan MJ (1998) Anal Chem 70:5177–5183CrossRefGoogle Scholar
  5. 5.
    Ramanathan K, Danielsson B (2001) Biosens Bioelectron 16:417–423CrossRefGoogle Scholar
  6. 6.
    Chemla YR, Crossman HL, Poon Y, McDermott R, Stevens R, Alper MD, Clarke J (2000) Proc Natl Acad Sci USA 97:14268–14272CrossRefGoogle Scholar
  7. 7.
    Janshoff A, Galla HJ, Steinem C (2000) Angew Chem Int Ed 39:4004–4032CrossRefGoogle Scholar
  8. 8.
    Lange K, Rapp BE, Rapp M (2008) Anal Bioanal Chem 391:1509–1519CrossRefGoogle Scholar
  9. 9.
    Hwang KS, Lee SM, Kim SK, Lee JH, Kim TS (2009) Annu Rev Anal Chem 2:77–98CrossRefGoogle Scholar
  10. 10.
    Gauglitz G (2005) Anal Bioanal Chem 381:141–155CrossRefGoogle Scholar
  11. 11.
    Homola J (2008) Chem Rev 108:462–493CrossRefGoogle Scholar
  12. 12.
    Homola J (2003) Anal Bioanal Chem 377:528–539CrossRefGoogle Scholar
  13. 13.
    Squires TM, Messinger RJ, Manalis SR (2008) Nat Biotechnol 26:417–426CrossRefGoogle Scholar
  14. 14.
    Dahlin AB, Jonsson MP, Hook F (2008) Adv Mater 20:1436CrossRefGoogle Scholar
  15. 15.
    Marinakos SM, Chen SH, Chilkoti A (2007) Anal Chem 79:5278–5283CrossRefGoogle Scholar
  16. 16.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Chem Rev 108:494–521CrossRefGoogle Scholar
  17. 17.
    Mayer KM, Hafner JH (2011) Chem Rev 111:3828–3857CrossRefGoogle Scholar
  18. 18.
    Sannomiya T, Vörös J (2011) Trends Biotechnol 29:343–351CrossRefGoogle Scholar
  19. 19.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Nat Mater 7:442–453CrossRefGoogle Scholar
  20. 20.
    Bendikov TA, Rabinkov A, Karakouz T, Vaskevich A, Rubinstein I (2008) Anal Chem 80:7487–7498CrossRefGoogle Scholar
  21. 21.
    Kedem O, Tesler AB, Vaskevich A, Rubinstein I (2011) ACS Nano 5:748–760CrossRefGoogle Scholar
  22. 22.
    Dahlin AB, Jonsson P, Jonsson MP, Schmid E, Zhou Y, Hook F (2008) ACS Nano 2:2174–2182CrossRefGoogle Scholar
  23. 23.
    Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV (2011) Nano Lett 11:391–397CrossRefGoogle Scholar
  24. 24.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Nat Mater 8:867–871CrossRefGoogle Scholar
  25. 25.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Science 277:1078–1081CrossRefGoogle Scholar
  26. 26.
    Laromaine A, Koh LL, Murugesan M, Ulijn RV, Stevens MM (2007) J Am Chem Soc 129:4156CrossRefGoogle Scholar
  27. 27.
    Liu GL, Yin YD, Kunchakarra S, Mukherjee B, Gerion D, Jett SD, Bear DG, Gray JW, Alivisatos AP, Lee LP, Chen FQF (2006) Nat Nanotechnol 1:47–52CrossRefGoogle Scholar
  28. 28.
    Reinhard BM, Sheikholeslami S, Mastroianni A, Alivisatos AP, Liphardt J (2007) Proc Natl Acad Sci USA 104:2667–2672CrossRefGoogle Scholar
  29. 29.
    Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) Nat Biotechnol 23:741–745CrossRefGoogle Scholar
  30. 30.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Angew Chem Int Ed 49:3280–3294Google Scholar
  31. 31.
    Alvarez-Puebla RA, Liz-Marzan LM (2010) Small 6:604–610CrossRefGoogle Scholar
  32. 32.
    Makowski MS, Ivanisevic A (2011) Small 7:1863–1875CrossRefGoogle Scholar
  33. 33.
    Cui Y, Wei QQ, Park HK, Lieber CM (2001) Science 293:1289–1292CrossRefGoogle Scholar
  34. 34.
    Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Nat Biotechnol 23:1294–1301CrossRefGoogle Scholar
  35. 35.
    Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Sensors 8:1400–1458CrossRefGoogle Scholar
  36. 36.
    Baba A, Taranekar P, Ponnapati RR, Knoll W, Advincula RC (2010) ACS Appl Mater Interfaces 2:2347–2354CrossRefGoogle Scholar
  37. 37.
    Goluch ED, Wolfrum B, Singh PS, Zevenbergen MAG, Lemay SG (2009) Anal Bioanal Chem 394:447–456CrossRefGoogle Scholar
  38. 38.
    Zachek MK, Park J, Takmakov P, Wightman RM, McCarty GS (2010) Analyst 135:1556–1563CrossRefGoogle Scholar
  39. 39.
    Lisdat F, Schafer D (2008) Anal Bioanal Chem 391:1555–1567CrossRefGoogle Scholar
  40. 40.
    Daniels JS, Pourmand N (2007) Electroanalysis 19:1239–1257CrossRefGoogle Scholar
  41. 41.
    Berggren C, Bjarnason B, Johansson G (2001) Electroanalysis 13:173–180CrossRefGoogle Scholar
  42. 42.
    Dahlin AB, Sannomiya T, Zahn R, Sotiriou GA, Vörös J (2011) Nano Lett 11:1337–1343CrossRefGoogle Scholar
  43. 43.
    Freestone I, Meeks N, Sax M, Higgitt C (2007) Gold Bull 40:270–277CrossRefGoogle Scholar
  44. 44.
    Johnson PB, Christy RW (1972) Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  45. 45.
    Zhang W, Brongersma SH, Richard O, Brijs B, Palmans R, Froyen L, Maex K (2004) Microelectron Eng 76:146–152CrossRefGoogle Scholar
  46. 46.
    Haes AJ, Van Duyne RP (2004) Anal Bioanal Chem 379:920–930CrossRefGoogle Scholar
  47. 47.
    Liedberg B, Nylander C, Lundstrom I (1983) Sens Actuators 4:299–304CrossRefGoogle Scholar
  48. 48.
    Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Nano Lett 7:1947–1952CrossRefGoogle Scholar
  49. 49.
    Gao H, Henzie J, Lee MH, Odom TW (2008) Proc Natl Acad Sci USA 105:20146–20151CrossRefGoogle Scholar
  50. 50.
    Langhammer C, Yuan Z, Zoric I, Kasemo B (2006) Nano Lett 6:833–838CrossRefGoogle Scholar
  51. 51.
    Vestergaard MD, Kerman K, Tamiya E (2007) Sensors 7:3442–3458CrossRefGoogle Scholar
  52. 52.
    Zhang N, Schweiss R, Zong Y, Knoll W (2007) Electrochim Acta 52:2869–2875CrossRefGoogle Scholar
  53. 53.
    Abeles F, Lopezrios T, Tadjeddine A (1975) Solid State Commun 16:843–847CrossRefGoogle Scholar
  54. 54.
    Shan XN, Patel U, Wang SP, Iglesias R, Tao NJ (2010) Science 327:1363–1366CrossRefGoogle Scholar
  55. 55.
    Zhang YM, Terrill RH, Bohn PW (1999) Anal Chem 71:119–125CrossRefGoogle Scholar
  56. 56.
    Xia C, Advincula RC, Baba A, Knoll W (2002) Langmuir 18:3555–3560CrossRefGoogle Scholar
  57. 57.
    Wang YJ, Knoll W (2006) Anal Chim Acta 558:150–157CrossRefGoogle Scholar
  58. 58.
    Kang XF, Cheng GJ, Dong SJ (2001) Electrochem Commun 3:489–493CrossRefGoogle Scholar
  59. 59.
    Baba A, Advincula RC, Knoll W (2002) J Phys Chem B 106:1581–1587CrossRefGoogle Scholar
  60. 60.
    Hanken DG, Corn RM (1997) Anal Chem 69:3665–3673CrossRefGoogle Scholar
  61. 61.
    McIntyre JD (1973) Surf Sci 37:658–682CrossRefGoogle Scholar
  62. 62.
    Tadjeddine A, Kolb DM, Kotz R (1980) Surf Sci 101:277–285CrossRefGoogle Scholar
  63. 63.
    Iwasaki Y, Horiuchi T, Morita M, Niwa O (1998) Sens Actuators B Chem 50:145–148CrossRefGoogle Scholar
  64. 64.
    Foley KJ, Shan X, Tao NJ (2008) Anal Chem 80:5146–5151CrossRefGoogle Scholar
  65. 65.
    Kolb DM (2001) Angew Chem Int Ed 40:1162–1181CrossRefGoogle Scholar
  66. 66.
    Wang S, Huang X, Shan X, Foley KJ, Tao N (2010) Anal Chem 82:935–941CrossRefGoogle Scholar
  67. 67.
    Scarano S, Mascini M, Turner APF, Minunni M (2010) Biosens Bioelectron 25:957–966CrossRefGoogle Scholar
  68. 68.
    Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Chem Soc Rev 37:1783–1791CrossRefGoogle Scholar
  69. 69.
    Kim F, Connor S, Song H, Kuykendall T, Yang PD (2004) Angew Chem Int Ed 43:3673–3677CrossRefGoogle Scholar
  70. 70.
    Wang H, Brandl DW, Nordlander P, Halas NJ (2007) Acc Chem Res 40:53–62CrossRefGoogle Scholar
  71. 71.
    Hanarp P, Kall M, Sutherland DS (2003) J Phys Chem B 107:5768–5772CrossRefGoogle Scholar
  72. 72.
    Haynes CL, Van Duyne RP (2001) J Phys Chem B 105:5599–5611CrossRefGoogle Scholar
  73. 73.
    Aizpurua J, Hanarp P, Sutherland DS, Kall M, Bryant GW, de Abajo FJG (2003) Phys Rev Lett 90:057401CrossRefGoogle Scholar
  74. 74.
    Bukasov R, Shumaker-Parry JS (2007) Nano Lett 7:1113–1118CrossRefGoogle Scholar
  75. 75.
    Takei H, Himmelhaus M, Okamoto T (2002) Opt Lett 27:342–344CrossRefGoogle Scholar
  76. 76.
    Heo CJ, Kim SH, Jang SG, Lee SY, Yang SM (2009) Adv Mater 21:1726–1731CrossRefGoogle Scholar
  77. 77.
    Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, de Abajo FJG (2008) Chem Soc Rev 37:1792–1805CrossRefGoogle Scholar
  78. 78.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677CrossRefGoogle Scholar
  79. 79.
    Englebienne P (1998) Analyst 123:1599–1603CrossRefGoogle Scholar
  80. 80.
    Daniel MC, Astruc D (2004) Chem Rev 104:293–346CrossRefGoogle Scholar
  81. 81.
    Shipway AN, Lahav M, Willner I (2000) Adv Mater 12:993–998CrossRefGoogle Scholar
  82. 82.
    Mulvaney P (1996) Langmuir 12:788–800CrossRefGoogle Scholar
  83. 83.
    Murray RW, Templeton AC, Pietron JJ, Mulvaney P (2000) J Phys Chem B 104:564–570CrossRefGoogle Scholar
  84. 84.
    Ung T, Giersig M, Dunstan D, Mulvaney P (1997) Langmuir 13:1773–1782CrossRefGoogle Scholar
  85. 85.
    Oldfield G, Ung T, Mulvaney P (2000) Adv Mater 12:1519–1522CrossRefGoogle Scholar
  86. 86.
    Chapman R, Mulvaney P (2001) Chem Phys Lett 349:358–362CrossRefGoogle Scholar
  87. 87.
    Miyazaki T, Hasegawa R, Yamaguchi H, Oh-Oka H, Nagato H, Amemiya I, Uchikoga S (2009) J Phys Chem C 113:8484–8490CrossRefGoogle Scholar
  88. 88.
    Novo C, Funston AM, Gooding AK, Mulvaney P (2009) J Am Chem Soc 131:14664–14666CrossRefGoogle Scholar
  89. 89.
    Novo C, Funston AM, Mulvaney P (2008) Nat Nanotechnol 3:598–602CrossRefGoogle Scholar
  90. 90.
    Novo C, Mulvaney P (2007) Nano Lett 7:520–524CrossRefGoogle Scholar
  91. 91.
    Qu XH, Peng ZQ, Jiang X, Dong SJ (2004) Langmuir 20:2519–2522CrossRefGoogle Scholar
  92. 92.
    Sannomiya T, Dermutz H, Hafner C, Voros J, Dahlin AB (2010) Langmuir 26:7619–7626CrossRefGoogle Scholar
  93. 93.
    Szunerits S, Praig VG, Manesse M, Boukherroub R (2008) Gold island films on indium tin oxide for localized surface plasmon sensing. Nanotechnology 19:195712CrossRefGoogle Scholar
  94. 94.
    Zhang X, Hicks EM, Zhao J, Schatz GC, Van Duyne RP (2005) Nano Lett 5:1503–1507CrossRefGoogle Scholar
  95. 95.
    Kanehara M, Koike H, Yoshinaga T, Teranishi T (2009) J Am Chem Soc 131:17736–17737CrossRefGoogle Scholar
  96. 96.
    Armstrong NR, Lin AWC, Fujihira M, Kuwana T (1976) Anal Chem 48:741–750CrossRefGoogle Scholar
  97. 97.
    Loo BH (1982) J Phys Chem 86:433–437CrossRefGoogle Scholar
  98. 98.
    Ivanova OS, Zamborini FP (2009) J Am Chem Soc 132:70–72CrossRefGoogle Scholar
  99. 99.
    Gao P, Weaver MJ (1986) J Phys Chem 90:4057–4063CrossRefGoogle Scholar
  100. 100.
    Wang TJ, Lin WS (2006) Appl Phys Lett 89:173903CrossRefGoogle Scholar
  101. 101.
    Hiep HM, Endo T, Saito M, Chikae M, Kim DK, Yamamura S, Takamura Y, Tamiya E (2008) Anal Chem 80:1859–1864CrossRefGoogle Scholar
  102. 102.
    Janshoff A, Steinem C (2006) Anal Bioanal Chem 385:433–451CrossRefGoogle Scholar
  103. 103.
    Ruther M, Shao L-H, Linden S, Weissmüller J, Wegener M (2011) Appl Phys Lett 98:013112CrossRefGoogle Scholar
  104. 104.
    Shao L-H, Ruther M, Linden S, Essig S, Busch K, Weissmüller J, Wegener M (2010) Adv Mater 22:5173–5177CrossRefGoogle Scholar
  105. 105.
    Auzelyte V, Solak HH, Ekinci Y, MacKenzie R, Voros J, Olliges S, Spolenak R (2008) Microelectron Eng 85:1131–1134CrossRefGoogle Scholar
  106. 106.
    Chen HA, Lin HY, Lin HN (2010) J Phys Chem C 114:10359–10364CrossRefGoogle Scholar
  107. 107.
    Lin HY, Chen HA, Lin HN (2008) Anal Chem 80:1937–1941CrossRefGoogle Scholar
  108. 108.
    Menke EJ, Thompson MA, Xiang C, Yang LC, Penner RM (2006) Nat Mater 5:914–919CrossRefGoogle Scholar
  109. 109.
    Shi P, Zhang JY, Lin HY, Bohn PW (2010) Small 6:2598–2603CrossRefGoogle Scholar
  110. 110.
    Xu QB, Bao JM, Capasso F, Whitesides GM (2006) Angew Chem Int Ed 45:3631–3635CrossRefGoogle Scholar
  111. 111.
    Lal S, Link S, Halas NJ (2007) Nat Photonics 1:641–648CrossRefGoogle Scholar
  112. 112.
    Schider G, Krenn JR, Gotschy W, Lamprecht B, Ditlbacher H, Leitner A, Aussenegg FR (2001) J Appl Phys 90:3825–3830CrossRefGoogle Scholar
  113. 113.
    Della Valle G, Sondergaard T, Bozhevolnyi SI (2008) Opt Express 16:6867–6876CrossRefGoogle Scholar
  114. 114.
    Sosnova MV, Dmitruk NL, Korovin AV, Mamykin SV, Mynko VI, Lytvyn OS (2010) Appl Phys B Lasers Opt 99:493–497CrossRefGoogle Scholar
  115. 115.
    Byun KM, Kim SJ, Kim D (2006) Appl Opt 45:3382–3389CrossRefGoogle Scholar
  116. 116.
    MacKenzie R, Fraschina C, Sannomiya T, Auzelyte V, Vörös J (2010) Sensors 10:9808–9830CrossRefGoogle Scholar
  117. 117.
    Durkan C, Welland ME (2000) Phys Rev B 61:14215–14218CrossRefGoogle Scholar
  118. 118.
    Liu Z, Searson PC (2006) J Phys Chem B 110:4318–4322CrossRefGoogle Scholar
  119. 119.
    MacKenzie R, Fraschina C, Sannomiya T, Voros J (2011) Nanotechnology 22:055203CrossRefGoogle Scholar
  120. 120.
    Singh KV, Whited AM, Ragineni Y, Barrett TW, King J, Solanki R (2010) Anal Bioanal Chem 397:1493–1502CrossRefGoogle Scholar
  121. 121.
    Bratov A, Ramon-Azcon J, Abramova N, Merlos A, Adrian J, Sanchez-Baeza F, Marco MP, Dominguez C (2008) Biosens Bioelectron 24:729–735CrossRefGoogle Scholar
  122. 122.
    Evans D, Johnson S, Laurenson S, Davies AG, Ko Ferrigno P, Walti C (2008) J Biol 7:3CrossRefGoogle Scholar
  123. 123.
    Hou YX, Helali S, Zhang AD, Jaffrezic-Renault N, Martelet C, Minic J, Gorojankina T, Persuy MA, Pajot-Augy E, Salesse R, Bessueille F, Samitier J, Errachid A, Akimov V, Reggiani L, Pennetta C, Alfinito E (2006) Biosens Bioelectron 21:1393–1402CrossRefGoogle Scholar
  124. 124.
    Prikulis J, Hanarp P, Olofsson L, Sutherland D, Kall M (2004) Nano Lett 4:1003–1007CrossRefGoogle Scholar
  125. 125.
    Jonsson MP, Dahlin AB, Jonsson P, Hook F (2008) Biointerphases 3:FD30–FD40CrossRefGoogle Scholar
  126. 126.
    Sannomiya T, Scholder O, Jefimovs K, Hafner C, Dahlin AB (2011) Small 7:1653–1663CrossRefGoogle Scholar
  127. 127.
    Henzie J, Lee MH, Odom TW (2007) Nat Nanotechnol 2:549–554CrossRefGoogle Scholar
  128. 128.
    Genet C, Ebbesen TW (2007) Nature 445:39–46CrossRefGoogle Scholar
  129. 129.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Nature 391:667–669CrossRefGoogle Scholar
  130. 130.
    Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L (2010) Rev Mod Phys 82:729–787CrossRefGoogle Scholar
  131. 131.
    de Abajo FJG (2007) Rev Mod Phys 79:1267–1290CrossRefGoogle Scholar
  132. 132.
    Park TH, Mirin N, Lassiter JB, Nehl CL, Halas NJ, Nordlander P (2008) ACS Nano 2:25–32CrossRefGoogle Scholar
  133. 133.
    Dahlin AB, Tegenfeldt JO, Hook F (2006) Anal Chem 78:4416–4423CrossRefGoogle Scholar
  134. 134.
    Rindzevicius T, Alaverdyan Y, Dahlin A, Höök F, Sutherland DS, Käll M (2005) Nano Lett 5:2335–2339CrossRefGoogle Scholar
  135. 135.
    Ward CA, Bhasin K, Bell RJ, Alexander RW, Tyler I (1975) J Chem Phys 62:1674–1676CrossRefGoogle Scholar
  136. 136.
    Tobin RG (2002) Surf Sci 502:374–387CrossRefGoogle Scholar
  137. 137.
    Tucceri R (2004) Surf Sci Rep 56:85–157CrossRefGoogle Scholar
  138. 138.
    Reilly TH, Tenent RC, Barnes TM, Rowlen KL, van de Lagemaat J (2010) ACS Nano 4:615–624CrossRefGoogle Scholar
  139. 139.
    Jonsson MP, Dahlin AB, Feuz L, Petronis S, Hook F (2010) Anal Chem 82:2087–2094CrossRefGoogle Scholar
  140. 140.
    Moreira CS, Lima AMN, Neff H, Thirstrup C (2008) Sens Actuators B 134:854–862CrossRefGoogle Scholar
  141. 141.
    Mitchell JS, Wu YQ, Cook CJ, Main L (2005) Anal Biochem 343:125–135CrossRefGoogle Scholar
  142. 142.
    Liron Z, Tender LM, Golden JP, Ligler FS (2002) Biosens Bioelectron 17:489–494CrossRefGoogle Scholar
  143. 143.
    Tang CS, Dusseiller M, Makohliso S, Heuschkel M, Sharma S, Keller B, Voros J (2006) Anal Chem 78:711–717CrossRefGoogle Scholar
  144. 144.
    Walti C, Wirtz R, Germishuizen WA, Bailey DMD, Pepper M, Middelberg APJ, Davies AG (2003) Langmuir 19:981–984CrossRefGoogle Scholar
  145. 145.
    Beeram SR, Zamborini FP (2009) J Am Chem Soc 131:11689–11691CrossRefGoogle Scholar
  146. 146.
    Heller MJ, Forster AH, Tu E (2000) Electrophoresis 21:157–164CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andreas B. Dahlin
    • 1
  • Bernd Dielacher
    • 2
  • Prayanka Rajendran
    • 2
  • Kaori Sugihara
    • 2
  • Takumi Sannomiya
    • 3
  • Marcy Zenobi-Wong
    • 2
  • Janos Vörös
    • 2
  1. 1.Bionanophotonics, Dept. of Applied PhysicsChalmers University of TechnologyGöteborgSweden
  2. 2.Laboratory of Biosensors and Bioelectronics, Institute of Biomedical EngineeringSwiss Federal Institute of TechnologyZurichSwitzerland
  3. 3.Department of Metallurgy and Ceramics ScienceTokyo Institute of TechnologyTokyoJapan

Personalised recommendations