Analytical and Bioanalytical Chemistry

, Volume 402, Issue 1, pp 381–387 | Cite as

Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes

  • Kristýna Pimková
  • Markéta Bocková
  • Kateřina Hegnerová
  • Jiří Suttnar
  • Jaroslav Čermák
  • Jiří HomolaEmail author
  • Jan E. DyrEmail author
Original Paper


The surface plasmon resonance (SPR) biosensor system with dispersionless microfluidics for the direct and label-free detection of a soluble vascular endothelial growth factor receptor (sVEGFR-1) is described. The detection approach takes advantage of an affinity interaction between sVEGFR-1 and its ligand, vascular endothelial growth factor (VEGF-A), which is covalently immobilized on the surface of the SPR sensor. The ability of the immobilized VEGF-A to specifically bind the sVEGFR-1 receptor is demonstrated in a buffer. The detection of sVEGFR-1 in 2% human blood plasma is carried out by using the sequential injection approach. The detection limit of 25 ng/mL is achieved. In addition, we demonstrate that the functional surface of the sensor can be regenerated for repeated use.


The detection of MDS protein marker, sVEGFR-1 (a soluble form of angiogenic receptor), via its physiological counterpart VEGF-A immobilized on the surface of an SPR sensor.


Surface plasmon resonance Myelodysplastic syndromes Vascular endothelial growth factor Protein markers 



This study was supported by research grants NS10633-3/2009 and MZ 02373601 from the Ministry of Health, Czech Republic, by research grant KAN200670701 and Praemium Academiae from the Academy of Sciences, Czech Republic, and by Baxter, Czech Republic.


  1. 1.
    Greenberg PL (2006) Myelodysplastic syndromes: clinical and biological advances. Cambridge University Press, New YorkGoogle Scholar
  2. 2.
    Hu Q, Dey AL, Yang Y, Shen Y, Jilani IB, Estey EH, Kantarjian HM, Giles FJ, Albitar M (2004) Soluble vascular endothelial growth factor receptor 1, and not receptor 2, is an independent prognostic factor in acute myeloid leukemia and myelodysplastic syndromes. Cancer 100(9):1884–1891CrossRefGoogle Scholar
  3. 3.
    Schuch G, Machluf M, Bartsch G, Nomi M, Richard H, Atala A, Soker S (2002) In vivo administration of vascular endothelial growth factor (VEGF) and its antagonist, soluble neuropilin-1, predicts a role of VEGF in the progression of acute myeloid leukemia in vivo. Blood 100(13):4622–4628CrossRefGoogle Scholar
  4. 4.
    Shibuya M (2006) Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol 39(5):469–478CrossRefGoogle Scholar
  5. 5.
    Keyt BA, Nguyen HV, Berleau LT, Duarte CM, Park J, Chen H, Ferrara N (1996) Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors—generation of receptor-selective VEGF variants by site-directed mutagenesis. J Biol Chem 271(10):5638–5646CrossRefGoogle Scholar
  6. 6.
    Senger DR (2010) Vascular endothelial growth factor: much more than an angiogenesis factor. Mol Biol Cell 21(3):377–379CrossRefGoogle Scholar
  7. 7.
    Mac Gabhann F, Popel AS (2008) Systems biology of vascular endothelial growth factors. Microcirculation 15(8):715–738CrossRefGoogle Scholar
  8. 8.
    Fuh G, Garcia KC, de Vos AM (2000) The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor Flt-1. J Biol Chem 275(35):26690–26695Google Scholar
  9. 9.
    Salih HR, Nuessler V, Denzlinger C, Starling GC, Kiener PA, Schmetzer HM (2004) Serum levels of CD137 ligand and CD178 are prognostic factors for progression of myelodysplastic syndrome. Leukemia Lymphoma 45(2):301–308CrossRefGoogle Scholar
  10. 10.
    Theilgaard-Mönch K, Boultwood J, Ferrari S, Giannopoulos K, Hernandez-Rivas JM, Kohlmann A, Morgan M, Porse B, Tagliafico E, Zwaan CM, Wainscoat J, Van den Heuvel-Eibrink MM, Mills K, Bullinger L (2011) Gene expression profiling in MDS and AML: potential and future avenues. Leukemia 25(6):909–920CrossRefGoogle Scholar
  11. 11.
    Belgore FM, Blann AD, Lip GY (2001) Measurement of free and complexed soluble vascular endothelial growth factor receptor, Flt-I, in fluid samples: development and application of two new immunoassays. Clin Sci 100(5):567–575CrossRefGoogle Scholar
  12. 12.
    Vaisocherova H, Faca VM, Taylor AD, Hanash S, Jiang S (2009) Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera. Biosens Bioelectron 24(7):2143–2148CrossRefGoogle Scholar
  13. 13.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493CrossRefGoogle Scholar
  14. 14.
    Cunningham SA, Tran TM, Arrate MP, Brock TA (1999) Characterization of vascular endothelial cell growth factor interactions with the kinase insert domain-containing receptor tyrosine kinase—a real time kinetic study. J Biol Chem 274(26):18421–18427CrossRefGoogle Scholar
  15. 15.
    Huang X, Gottstein C, Brekken RA, Thorpe PE (1998) Expression of soluble VEGF receptor 2 and characterization of its binding by surface plasmon resonance. Biochem Bioph Res Co 252(3):643–648CrossRefGoogle Scholar
  16. 16.
    Piliarik M, Bockova M, Homola J (2010) Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosens Bioelectron 26(4):1656–1661CrossRefGoogle Scholar
  17. 17.
    Scarano S, Mascini M, Turner APF, Minunni M (2010) Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25(5):957–966CrossRefGoogle Scholar
  18. 18.
    Springer T, Piliarik M, Homola J (2010) Real-time monitoring of biomolecular interactions in blood plasma using a surface plasmon resonance biosensor. Anal Bioanal Chem 398(5):1955–1961CrossRefGoogle Scholar
  19. 19.
    Herranz S, Bockova M, Marazuela MD, Homola J, Moreno-Bondi MC (2010) An SPR biosensor for the detection of microcystins in drinking water. Anal Bioanal Chem 398(6):2625–2634CrossRefGoogle Scholar
  20. 20.
    Jeevaratnam K, Nadarajah VD, Judson JP, Nalliah S, Abdullah F, Ramnan M, Krishnan R (2008) Periodic assessment of plasma Sflt-1 and Plgf concentrations and its association with structural and vascular changes of the placenta in pregnancy induced hypertension. Hypertens Pregnancy 27(4):657Google Scholar
  21. 21.
    Nagaoka S, Yoshida T, Akiyoshi J, Akiba J, Hisamoto T, Yoshida Y, Abe M, Koga H, Toirimura T, Ueno T, Sata M (2010) The ratio of serum placenta growth factor to soluble vascular endothelial growth factor receptor-1 predicts the prognosis of hepatocellular carcinoma. Oncol Rep 23(6):1647–1654Google Scholar
  22. 22.
    Przewratil P, Sitkiewicz A, Andrzejewska E (2010) Soluble receptors for vascular endothelial growth factor (sVEGFR1/sVEGFR2) in infantile hemangioma. Growth Factors 28(6):417–425CrossRefGoogle Scholar
  23. 23.
    Sunderji S, Gaziano E, Wothe D, Rogers LC, Sibai B, Karumanchi SA, Hodges-Savola C (2010) Automated assays for sVEGF R1 and PlGF as an aid in the diagnosis of preterm preeclampsia: a prospective clinical study. Am J Obstet Gynecol 202(1)Google Scholar
  24. 24.
    Wu FT, Stefanini MO, Mac Gabhann F, Kontos CD, Annex BH, Popel AS (2010) A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use. J Cell Mol Med 14(3):528–552Google Scholar
  25. 25.
    Yang KY, Liu KT, Chen YC, Chen CS, Lee YC, Perng RP, Feng JY (2011) Plasma soluble vascular endothelial growth factor receptor-1 levels predict outcomes of pneumonia-related septic shock patients: a prospective observational study. Crit Care 15(1)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kristýna Pimková
    • 1
  • Markéta Bocková
    • 2
  • Kateřina Hegnerová
    • 2
  • Jiří Suttnar
    • 1
  • Jaroslav Čermák
    • 1
  • Jiří Homola
    • 2
    Email author
  • Jan E. Dyr
    • 1
    Email author
  1. 1.Institute of Hematology and Blood TransfusionPragueCzech Republic
  2. 2.Institute of Photonics and ElectronicsPragueCzech Republic

Personalised recommendations