Analytical and Bioanalytical Chemistry

, Volume 402, Issue 1, pp 315–323 | Cite as

Micro-total analysis system for virus detection: microfluidic pre-concentration coupled to liposome-based detection

  • John T. Connelly
  • Sowmya Kondapalli
  • Marc Skoupi
  • John S. L. Parker
  • Brian J. Kirby
  • Antje J. Baeumner
Original Paper


An integrated microfluidic biosensor is presented that combines sample pre-concentration and liposome-based signal amplification for the detection of enteric viruses present in environmental water samples. This microfluidic approach overcomes the challenges of long assay times of cell culture-based methods and the need to extensively process water samples to eliminate inhibitors for PCR-based methods. Here, viruses are detected using an immunoassay sandwich approach with the reporting antibodies tagged to liposomes. Described is the development of the integrated device for the detection of environmentally relevant viruses using feline calicivirus (FCV) as a model organism for human norovirus. In situ fabricated nanoporous membranes in glass microchannels were used in conjunction with electric fields to achieve pre-concentration of virus–liposome complexes and therefore enhance the antibody–virus binding efficiency. The concentrated complexes were eluted to a detection region downstream where captured liposomes were lysed to release fluorescent dye molecules that were then quantified using image processing. This system was compared to an optimized electrochemical liposome-based microfluidic biosensor without pre-concentration. The limit of detection of FCV of the integrated device was at 1.6 × 105 PFU/mL, an order of magnitude lower than that obtained using the microfluidic biosensor without pre-concentration. This significant improvement is a key step toward the goal of using this integrated device as an early screening system for viruses in environmental water samples.


Biosensor Microfluidic Pre-concentration FCV Liposomes 



Cytopathogenic effects


Dulbecco’s modified Eagle’s media


Enzyme-linked immunosorbent assay


Fetal bovine serum


4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid




Immunomagnetic separation


Liposome immunoassay


Monocolonal antibody


Micro-total analysis system




Polyclonal antibody


Phosphate-buffered saline


Phosphate-buffered saline sucrose


Polymerase chain reaction


Plaque forming unit


Reverse transcriptase-PCR


Surface-enhanced Raman spectroscopy


Signal-to-noise ratio


Sulforhodamine B


United States Environmental Protection Agency



This publication was made possible by USEPA cooperative agreement #CR-83360101. Its contents are solely the responsibility of the recipient and do not necessarily represent the official views of the USEPA. Further, USEPA does not endorse the purchase of any commercial products or services mentioned in the publication.


  1. 1.
    Fong T-T, Lipp EK (2005) Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 69(2):357–371CrossRefGoogle Scholar
  2. 2.
    Wagenknecht LE, Roseman JM, Herman WH (1991) Increased incidence of insulin-dependent diabetes mellitus following an epidemic of coxsackievirus B5. Am J Epidemiol 133(10):1024–1031Google Scholar
  3. 3.
    Le Guyader FS, Atmar RL (2007) Viruses in shellfish. In: Bosch A (ed) Human viruses in water, vol 17, Perspectives in medical virology. Elsevier, Amsterdam, The Netherland, pp 205–226CrossRefGoogle Scholar
  4. 4.
    Block JC, Schwartzbrod L (1989) Viruses in water systems: detection and identification. VCH Publishers, New YorkGoogle Scholar
  5. 5.
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239(4839):487–491CrossRefGoogle Scholar
  6. 6.
    Parshionikar SU, Willian-True S, Fout GS, Robbins DE, Seys SA, Cassady JD, Harris R (2003) Waterborne outbreak of gastroenteritis associated with a norovirus. Appl Environ Microbiol 69(9):5263–5268CrossRefGoogle Scholar
  7. 7.
    Pusch D, Oh DY, Wolf S, Dumke R, Schröter-Bobsin U, Höhne M, Röske I, Schreier E (2005) Detection of enteric viruses and bacterial indicators in German environmental waters. Arch Virol 150(5):929–947CrossRefGoogle Scholar
  8. 8.
    Fout GS, Martinson BC, Moyer MWN, Dahling DR (2003) A multiplex reverse transcription-PCR method for detection of human enteric viruses in groundwater. Appl Environ Microbiol 69(6):3158–3164CrossRefGoogle Scholar
  9. 9.
    Rutjes SA, van den Berg HHJL, Lodder WJ, de Roda Husman AM (2006) Real-time detection of noroviruses in surface water by use of a broadly reactive nucleic acid sequence-based amplification assay. Appl Environ Microbiol 72(8):5349–5358CrossRefGoogle Scholar
  10. 10.
    Wyn-Jones P (2007) The detection of waterborne viruses. In: Bosch A (ed) Human viruses in water, vol 17, Perspectives in medical virology. Elsevier, Amsterdam, The Netherlands, pp 177–204CrossRefGoogle Scholar
  11. 11.
    Jofre J (2007) Indicators of waterborne enteric viruses. In: Bosch A (ed) Human viruses in water, vol 17, Perspectives in medical virology. Elsevier, Amsterdam, The Netherlands, pp 227–249CrossRefGoogle Scholar
  12. 12.
    Bosch A (1998) Human enteric viruses in the water environment: a minireview. Int Microbiol 1:191–196Google Scholar
  13. 13.
    Tree JA, Adams MR, Lees DN (2005) Disinfection of feline calicivirus (a surrogate for Norovirus) in wastewaters. J Appl Microbiol 98(1):155–162CrossRefGoogle Scholar
  14. 14.
    Tajima T, Takeda Y, Tohya Y, Sugii S (1998) Reactivities of feline calicivirus field isolates with monoclonal antibodies detected by enzyme-linked immunosorbent assay. J Vet Med Sci 60(6):753–755CrossRefGoogle Scholar
  15. 15.
    Ossiboff RJ, Parker JSL (2007) Identification of regions and residues in feline junctional adhesion molecule required for feline calicivirus binding and infection. J Virol 81(24):13608–13621CrossRefGoogle Scholar
  16. 16.
    Porter MD, Driskell JD, Kwarta KM, Lipert RJ, Neill JD, Ridpath JF (2006) Detection of viruses: atomic force microscopy and surface enhanced Raman spectroscopy. Dev Biol 126:31–39Google Scholar
  17. 17.
    Esch MB, Baeumner AJ, Durst RA (2001) Detection of Cryptosporidium parvum using oligonucleotide-tagged liposomes in a competitive assay format. Anal Chem 73(13):3162–3167CrossRefGoogle Scholar
  18. 18.
    Hartley HA, Baeumner AJ (2003) Biosensor for the specific detection of a single viable B. anthracis spore. Anal Bioanal Chem 376(3):319–327Google Scholar
  19. 19.
    Connelly J, Nugen S, Borejsza-Wysocki W, Durst R, Montagna R, Baeumner A (2008) Human pathogenic Cryptosporidium species bioanalytical detection method with single oocyst detection capability. Anal Bioanal Chem 391(2):487–495CrossRefGoogle Scholar
  20. 20.
    Baeumner AJ, Schlesinger NA, Slutzki NS, Romano J, Lee EM, Montagna RA (2002) A Biosensor for dengue virus detection: sensitive, rapid and serotype specific. Anal Chem 74(6):1442–1448CrossRefGoogle Scholar
  21. 21.
    Zaytseva NV, Montagna RA, Lee EM, Baeumner AJ (2004) Multi-analyte single-membrane biosensor for the serotype-specific detection of dengue virus. Anal Bioanal Chem 380:46–53CrossRefGoogle Scholar
  22. 22.
    Baeumner AJ, Cohen RN, Miksic V, Min JH (2003) RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens Bioelectron 18(4):405–413CrossRefGoogle Scholar
  23. 23.
    DeCory T, Durst RA, Zimmerman S, Garringer L, Paluca G, DeCory H, Montagna RA (2005) Development of an immunomagnetic bead-immunoliposome fluorescence assay for rapid detection of Escherichia coli 0157:H7 in aqueous samples and comparison of the assay with standard microbiology method. Appl Environ Microbiol 71(4):1856–1864CrossRefGoogle Scholar
  24. 24.
    Kim M, Oh S, Durst RA (2003) Detection of Escherichia coli O157:H7 using combined procedure of immunomagnetic separation and test strip liposome immunoassay. J Microbiol Biotechnol 13(4):509–516Google Scholar
  25. 25.
    Park S, Durst RA (2004) Modified immunoliposome sandwich assay for the detection of Escherichia coli O157:H7 in apple cider. J Food Prot 67(8):1568–1573Google Scholar
  26. 26.
    Bunyakul N, Edwards K, Promptmas C, Baeumner A (2008) Cholera toxin subunit B detection in microfluidic devices. Anal Bioanal Chem 393(1):177–186CrossRefGoogle Scholar
  27. 27.
    Kondapalli S, Connelly JT, Baeumner AJ, Kirby BJ (2011) Integrated microfluidic preconcentrator and immunobiosensor for pathogen detection. Microfluid Nanofluid (Online First):1–8Google Scholar
  28. 28.
    Song S, Singh AK, Kirby BJ (2004) Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Anal Chem 76(15):4589–4592CrossRefGoogle Scholar
  29. 29.
    Ossiboff RJ, Sheh A, Shotton J, Pesavento PA, Parker JSL (2007) Feline caliciviruses (FCVs) isolated from cats with virulent systemic disease possess in vitro phenotypes distinct from those of other FCV isolates. J Gen Virol 88(2):506–517CrossRefGoogle Scholar
  30. 30.
    Ossiboff RJ, Zhou Y, Lightfoot PJ, Prasad BVV, Parker JSL (2010) Conformational changes in the capsid of a calicivirus upon interaction with its functional receptor. J Virol 84(11):5550–5564CrossRefGoogle Scholar
  31. 31.
    Edwards K, Curtis K, Sailor J, Baeumner A (2008) Universal liposomes: preparation and usage for the detection of mRNA. Anal Bioanal Chem 391(5):1689–1702CrossRefGoogle Scholar
  32. 32.
    Masson J-F, Gauda E, Mizaikoff B, Kranz C (2008) The interference of HEPES buffer during amperometric detection of ATP in clinical applications. Anal Bioanal Chem 390(8):2067–2071CrossRefGoogle Scholar
  33. 33.
    Welch KD, Davis TZ, Aust SD (2002) Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators. Arch Biochem Biophys 397(2):360–369CrossRefGoogle Scholar
  34. 34.
    Edwards KA, Baeumner AJ (2006) Optimization of DNA-tagged liposomes for use in microtiter plate analyses. Anal Bioanal Chem 386(6):1613–1623CrossRefGoogle Scholar
  35. 35.
    Nugen SR, Asiello PJ, Connelly JT, Baeumner AJ (2009) PMMA biosensor for nucleic acids with integrated mixer and electrochemical detection. Biosens Bioelectron 24(8):2428–2433CrossRefGoogle Scholar
  36. 36.
    Goral VN, Zaytseva NV, Baeumner AJ (2006) Electrochemical microfluidic biosensor for the detection of nucleic acid sequences. Lab Chip 6(3):414–421CrossRefGoogle Scholar
  37. 37.
    Kwakye S, Baeumner A (2007) An embedded system for portable electrochemical detection. Sens Actuators, B 123(1):336–343CrossRefGoogle Scholar
  38. 38.
    Nygren H, Stenberg M (1985) Kinetics of antibody-binding to surface-immobilized antigen: Influence of mass transport on the enzyme-linked immunosorbent assay (ELISA). J Colloid Interface Sci 107(2):560–566CrossRefGoogle Scholar
  39. 39.
    Bange A, Halsall HB, Heineman WR (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20(12):2488–2503CrossRefGoogle Scholar
  40. 40.
    Kwakye S, Goral VN, Baeumner AJ (2006) Electrochemical microfluidic biosensor for nucleic acid detection with integrated minipotentiostat. Biosens Bioelectron 21:2217–2223CrossRefGoogle Scholar
  41. 41.
    Driskell JD, Kwarta KM, Lipert RJ, Porter MD, Neill JD, Ridpath JF (2005) Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Anal Chem 77(19):6147–6154CrossRefGoogle Scholar
  42. 42.
    Kopecka H, Dubrou S, Prevot J, Marechal J, Lopez-Pila JM (1993) Detection of naturally occurring enteroviruses in waters by reverse transcription, polymerase chain reaction, and hybridization. Appl Environ Microbiol 59(4):1213–1219Google Scholar
  43. 43.
    Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanan R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37(5):1001–1011CrossRefGoogle Scholar
  44. 44.
    Lee W-C, Lien K-Y, Lee G-B, Lei H-Y (2008) An integrated microfluidic system using magnetic beads for virus detection. Diagn Microbiol Infect Dis 60(1):51–58CrossRefGoogle Scholar
  45. 45.
    Li Y, Zhang C, Xing D (2011) Fast identification of foodborne pathogenic viruses using continuous-flow reverse transcription-PCR with fluorescence detection. Microfluid Nanofluid 10(2):367–380CrossRefGoogle Scholar
  46. 46.
    Lien K-Y, Lee W-C, Lei H-Y, Lee G-B (2007) Integrated reverse transcription polymerase chain reaction systems for virus detection. Biosens Bioelectron 22(8):1739–1748CrossRefGoogle Scholar
  47. 47.
    Zhang C, Xu J, Ma W, Zheng W (2006) PCR microfluidic devices for DNA amplification. Biotechnol Adv 24(3):243–284CrossRefGoogle Scholar
  48. 48.
    Zhang C, Xing D (2007) Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res 35(13):4223–4237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • John T. Connelly
    • 1
  • Sowmya Kondapalli
    • 2
  • Marc Skoupi
    • 1
  • John S. L. Parker
    • 3
  • Brian J. Kirby
    • 2
  • Antje J. Baeumner
    • 1
  1. 1.Department of Biological and Environmental EngineeringCornell UniversityIthacaUSA
  2. 2.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  3. 3.Baker Institute of Animal Health, College of Veterinary MedicineCornell UniversityIthacaUSA

Personalised recommendations