Advertisement

Analytical and Bioanalytical Chemistry

, Volume 402, Issue 1, pp 413–421 | Cite as

Probe accessibility effects on the performance of electrochemical biosensors employing DNA monolayers

  • Vanessa Biagiotti
  • Alessandro Porchetta
  • Sara Desiderati
  • Kevin W. Plaxco
  • Giuseppe Palleschi
  • Francesco Ricci
Original Paper

Abstract

Surface-confined DNA probes are increasingly used as recognition elements (or presentation scaffolds) for detection of proteins, enzymes, and other macromolecules. Here we demonstrate that the density of the DNA probe monolayer on the gold electrode is a crucial determinant of the final signalling of such devices. We do so using redox modified single-stranded and double-stranded DNA probes attached to the surface of a gold electrode and measuring the rate of digestion in the presence of a non-specific nuclease enzyme. We demonstrate that accessibility of DNA probes for binding to their macromolecular target is, as expected, improved at lower probe densities. However, with double-stranded DNA probes, even at the lowest densities investigated, a significant fraction of the immobilized probe is inaccessible to nuclease digestion. These results stress the importance of the accessibility issue and of probe density effects when DNA-based sensors are used for detection of macromolecular targets.

Figure

Here we demonstrate that the density of the DNA probe monolayer is a crucial determinant of the final signalling of DNA-bases sensors used for the detection of proteins, enzymes, and other macromolecules.

Keywords

Density DNA sensor SAM Protein Electrochemical 

Notes

Acknowledgements

The authors acknowledge members of our research groups for helpful discussions and comments on the manuscript. This work was supported by the Italian Ministry of University and Research (MIUR) through the project FIRB “Futuro in Ricerca”.

References

  1. 1.
    Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors and enzyme biosensors. Electroanalysis 15(11):913–947CrossRefGoogle Scholar
  2. 2.
    Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998CrossRefGoogle Scholar
  3. 3.
    Wang J (2000) From DNA biosensors to gene chips. Nucleic Acids Res 28(16):3011–3016CrossRefGoogle Scholar
  4. 4.
    Ricci F, Volpe G, Micheli L, Palleschi G (2007) A review on novel developments and applications of immunosensors in food analysis. Anal Chim Acta 605(2):111–129CrossRefGoogle Scholar
  5. 5.
    Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21(10):1192–1199CrossRefGoogle Scholar
  6. 6.
    Wang J (2002) Electrochemical nucleic acid biosensors. Anal Chim Acta 469(1):63–71CrossRefGoogle Scholar
  7. 7.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539CrossRefGoogle Scholar
  8. 8.
    Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51(12):2415–2418CrossRefGoogle Scholar
  9. 9.
    Ricci F (2008) Plaxco KW (2008) E-DNA sensors for convenient, label-free electrochemical detection of hybridization. Microchim Acta 163(3–4):149–155CrossRefGoogle Scholar
  10. 10.
    Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. Biosens Bioelectron 14(5):443–456CrossRefGoogle Scholar
  11. 11.
    Gooding JJ, Mearns F, Yang W, Liu J (2003) Self-assembled monolayers into the 21st century: Recent advances and applications. Electroanalysis 15(2):81–96CrossRefGoogle Scholar
  12. 12.
    Fan C, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci U S A 100(16):9134–9137CrossRefGoogle Scholar
  13. 13.
    Kelley SO, Boon EM, Barton JK, Jackson NM, Hill MG (1999) Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res 27(24):4830–4837CrossRefGoogle Scholar
  14. 14.
    Tosar JP, Brañas G, Laíz J (2010) Electrochemical DNA hybridization sensors applied to real and complex biological samples. Biosens Bioelectron 26(4):1205–1217CrossRefGoogle Scholar
  15. 15.
    Park J, Park S (2009) DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool. Sensors 9(12):9513–9532CrossRefGoogle Scholar
  16. 16.
    Vercoutere W, Akeson M (2002) Biosensors for DNA sequence detection. Curr Opin Chem Biol 6(6):816–822CrossRefGoogle Scholar
  17. 17.
    Jayasena SD (1999) Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45(9):1628–1650Google Scholar
  18. 18.
    Willner I, Zayats M (2007) Electronic aptamer-based sensors. Ang Chemie Int Ed 46(34):6408–6418CrossRefGoogle Scholar
  19. 19.
    Xiao Y, Rowe AA, Plaxco KW (2007) Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J Am Chem Soc 129(2):262–263CrossRefGoogle Scholar
  20. 20.
    Xiao Y, Piorek BD, Plaxco KW, Heeger AJ (2005) A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J Am Chem Soc 127(51):17990–17991CrossRefGoogle Scholar
  21. 21.
    Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Ang Chemie Int Ed 44(34):5456–5459CrossRefGoogle Scholar
  22. 22.
    Radi A, Acero Sánchez JL, Baldrich E, O'Sullivan CK (2006) Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J Am Chem Soc 128(1):117–124CrossRefGoogle Scholar
  23. 23.
    Strehlitz B, Nikolaus N, Stoltenburg R (2008) Protein detection with aptamer biosensors. Sensors 8(7):4296–4307CrossRefGoogle Scholar
  24. 24.
    Qureshi A, Gurbuz Y, Kallempudi S, Niazi JH (2010) Label-free RNA aptamer-based capacitive biosensor for the detection of C-reactive protein. Phys Chem Chem Phys 12(32):9176–9182CrossRefGoogle Scholar
  25. 25.
    Ricci F, Bonham AJ, Mason AC, Reich NO, Plaxco KW (2009) Reagentless, electrochemical approach for the specific detection of double- and single-stranded DNA binding proteins. Anal Chem 81(4):1608–1614CrossRefGoogle Scholar
  26. 26.
    Ricci F, Adornetto G, Moscone D, Plaxco KW, Palleschi G (2010) Quantitative, reagentless, single-step electrochemical detection of anti-DNA antibodies directly in blood serum. Chem Comm 46(10):1742–1744CrossRefGoogle Scholar
  27. 27.
    Wang J, Onoshima D, Aki M, Okamoto Y, Kaji N, Tokeshi M et al (2011) Label-free detection of DNA-binding proteins based on microfluidic solid-state molecular beacon sensor. Anal Chem 83(9):3528–3532CrossRefGoogle Scholar
  28. 28.
    Cash KJ, Ricci F, Plaxco KW (2009) An electrochemical sensor for the detection of protein–small molecule interactions directly in serum and other complex matrices. J Am Chem Soc 131(20):6955–6857CrossRefGoogle Scholar
  29. 29.
    Cash KJ, Ricci F, Plaxco KW (2009) A general electrochemical method for label-free screening of protein–small molecule interactions. Chem Commun 41:6222–6224CrossRefGoogle Scholar
  30. 30.
    Rant U, Pringsheim E, Kaiser W, Arinaga K, Knezevic J, Tornow M, Fujita S, Yokoyama N, Abstreiter G (2009) Detection and size analysis of proteins with switchable DNA layers. Nano Lett 9(4):1290–1295CrossRefGoogle Scholar
  31. 31.
    Tort N, Salvador JP, Eritja R, Poch M, Martınez E, Samitier J, Marco MP (2009) Fluorescence site-encoded DNA addressable hapten microarray for anabolic androgenic steroids.Trends. Anal Chem 28(6):718–728Google Scholar
  32. 32.
    Chen S, Phillips MF, Cerrina F, Smith LM (2009) Controlling oligonucleotide surface density in light-directed DNA array fabrication. Langmuir 25(11):6570–6575CrossRefGoogle Scholar
  33. 33.
    Kjällman THM, Peng H, Soeller C, Travas-Sejdic J (2008) Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor. Anal Chem 80(24):9460–9466CrossRefGoogle Scholar
  34. 34.
    White RJ, Phares N, Lubin AA, Xiao Y, Plaxco KW (2008) Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry. Langmuir 24(18):10513–10518CrossRefGoogle Scholar
  35. 35.
    Ricci F, Lai RY, Heeger AJ, Plaxco KW, Sumner JJ (2007) Effect of molecular crowding on the response of an electrochemical DNA sensor. Langmuir 23(12):6827–6834CrossRefGoogle Scholar
  36. 36.
    Peterson AW, Heaton RJ, Georgiadis RM (2001) The effect of surface probe density on DNA hybridization. Nucleic Acids Res 29(24):5163–5168CrossRefGoogle Scholar
  37. 37.
    Lee C, Gong P, Harbers GM, Grainger DW, Castner DG, Gamble LJ (2006) Surface coverage and structure of mixed DNA/Alkylthiol monolayers on gold. Characterization by XPS, NEXAFS, and fluorescence intensity measurements. Anal Chem 78(10):3316–3325CrossRefGoogle Scholar
  38. 38.
    Liao TH, Salnikow J, Moore S, Stein WH (1973) Bovine pancreatic deoxyribonuclease A. isolation of cyanogen bromide peptides; complete covalent structure of the polypeptide chain. J Biol Chem 248(4):1489–1495Google Scholar
  39. 39.
    Xiao Y, Lai RY, Plaxco KW (2007) Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nat Protoc 2(11):2875–2880CrossRefGoogle Scholar
  40. 40.
    Phares N, White RJ, Plaxco KW (2009) Improving the stability and sensing of electrochemical biosensors by employing trithiol-anchoring groups in a six-carbon self-assembled monolayer. Anal Chem 81(3):1095–1100CrossRefGoogle Scholar
  41. 41.
    O'Connor SD, Olsen GT, Creager SE (1999) Nernstian electron source model for the ac voltammetric response of a reversible surface redox reaction using large-amplitude ac voltages. J Electroanal Chem 466(2):197–202CrossRefGoogle Scholar
  42. 42.
    Creager SE, Wooster TT (1998) A new way of using ac voltammetry to study redox kinetics in electroactive monolayers. Anal Chem 70(20):4257–4263CrossRefGoogle Scholar
  43. 43.
    Sumner JJ, Weber KS, Hockett LA, Creager SE (2000) Long-range heterogeneous electron transfer between ferrocene and gold mediated by n-alkane and W-aikyl-carboxamide bridges. J Phys Chem B 104(31):7449–7454CrossRefGoogle Scholar
  44. 44.
    Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: The case for responsive nucleic acid architectures. Acc Chem Res 43(4):496–505CrossRefGoogle Scholar
  45. 45.
    Castronovo M, Radovic S, Grunwald C, Casalis L, Morgante M, Scoles G (2008) Control of steric hindrance on restriction enzyme reactions with surface-bound DNA nanostructures. Nano Lett 8(12):4140–4145CrossRefGoogle Scholar
  46. 46.
    Castronovo M, Lucesoli A, Parisse P, Kurnikova A, Malhotra A, Grassi M et al (2011) Two-dimensional enzyme diffusion in laterally confined DNA monolayers. Nature Comm 2(1)Google Scholar
  47. 47.
    Palanisamy R, Connolly AR, Trau M (2010) Considerations of solid-phase DNA amplification. Bioconjug Chem 21(4):690–695CrossRefGoogle Scholar
  48. 48.
    McCalla SE, Luryi AL, Tripathi A (2009) Steric effects and mass-transfer limitations surrounding amplification reactions on immobilized long and clinically relevant DNA templates. Langmuir 25(11):6168–6175CrossRefGoogle Scholar
  49. 49.
    Bar M, Bar-Ziv RH (2009) Spatially resolved DNA brushes on a chip: Gene activation by enzymatic cascade. Nano Lett 9(12):4462–4466CrossRefGoogle Scholar
  50. 50.
    Ricci F, Zari N, Caprio F, Recine S, Amine A, Moscone D et al (2009) Surface chemistry effects on the performance of an electrochemical DNA sensor. Bioelectron 76(1–2):208–213Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Vanessa Biagiotti
    • 1
  • Alessandro Porchetta
    • 1
  • Sara Desiderati
    • 1
  • Kevin W. Plaxco
    • 3
  • Giuseppe Palleschi
    • 1
    • 2
  • Francesco Ricci
    • 1
    • 2
  1. 1.Dipartimento di Scienze e Tecnologie ChimicheUniversity of RomeRomeItaly
  2. 2.Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”RomeItaly
  3. 3.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations