Analytical and Bioanalytical Chemistry

, Volume 401, Issue 8, pp 2651–2656 | Cite as

Multistep liquid-phase lithography for fast prototyping of microfluidic free-flow-electrophoresis chips

  • Stefan Jezierski
  • Leonid Gitlin
  • Stefan Nagl
  • Detlev Belder
Technical Note


We present a fast and versatile method to produce functional micro free-flow electrophoresis chips. Microfluidic structures were generated between two glass slides applying multistep liquid-phase lithography, omitting troublesome bonding steps or cost-intensive master structures. Utilizing a novel spacer-less approach with the photodefinable polymer polyethyleneglycol dimethacrylate (PEG-DA), microfluidic devices with hydrophilic channels of only 25 μm in height were generated. The microfluidic chips feature ion-permeable segregation walls between the electrode channels and the separation bed and hydrophilic surfaces. The performance of the chip is demonstrated by free-flow electrophoretic separation of fluorescent xanthene dyes and fluorescently labeled amino acids.


Capillary electrophoresis/electrophoresis Microfluidics Microfabrication Free-flow electrophoresis Lab-on-a-chip 



S.J. is supported by the European Social Fund (ESF # 080938819) and S.N. by the Deutsche Forschungsgemeinschaft (DFG). The assistance of B. Kohlstrunk, Prof. J. A. Käs (mask aligner) and G. Ramm, Prof. M. Grundmann (surface profiles) from the Physics Department, University of Leipzig, is gratefully acknowledged.

Supplementary material (5.9 mb)
Supplementary material, approximately 5.92 MB.


  1. 1.
    Qin D, Xia Y, Whitesides GM (1996) Rapid prototyping of complex structures with feature sizes larger than 20 μm. Adv Mater 8:917–919CrossRefGoogle Scholar
  2. 2.
    Becker H, Gärtner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21:12–26CrossRefGoogle Scholar
  3. 3.
    Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56:267–287CrossRefGoogle Scholar
  4. 4.
    Beebe DJ, Moore JS, Yu Q, Liu RH, Kraft ML, Jo BH, Devadoss C (2000) Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. Proc Natl Acad Sci USA 97:13488–13493CrossRefGoogle Scholar
  5. 5.
    Agarwal AK, Beebe DJ, Jiang HR (2006) Integration of polymer and metal microstructures using liquid-phase photopolymerization. J Micromech Microeng 16:332–340CrossRefGoogle Scholar
  6. 6.
    Mohanty SK, Warrick J, Gorski J, Beebe DJ (2009) An accessible micro-capillary electrophoresis device using surface-tension-driven flow. Electrophoresis 30:1470–1481CrossRefGoogle Scholar
  7. 7.
    Raymond DE, Manz A, Widmer HM (1994) Continuous sample pretreatment using a free-flow electrophoresis device integrated onto a silicon chip. Anal Chem 66:2858–2865CrossRefGoogle Scholar
  8. 8.
    Zhang CX, Manz A (2003) High-speed free-flow electrophoresis on chip. Anal Chem 75:5759–5766CrossRefGoogle Scholar
  9. 9.
    Janasek D, Schilling M, Franzke J, Manz A (2006) Isotachophoresis in free-flow using a miniaturized device. Anal Chem 78:3815–3819CrossRefGoogle Scholar
  10. 10.
    Kohlheyer D, Besselink GA, Schlautmann S, Schasfoort RB (2006) Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes. Lab Chip 6:374–380CrossRefGoogle Scholar
  11. 11.
    de Jesus D P, Blanes L, do Lago C L (2006) Microchip free-flow electrophoresis on glass substrate using laser-printing toner as structural material. Electrophoresis 27:4935–4942.Google Scholar
  12. 12.
    Albrecht JW, Jensen KF (2006) Micro free-flow IEF enhanced by active cooling and functionalized gels. Electrophoresis 27:4960–4969CrossRefGoogle Scholar
  13. 13.
    (a) Raymond D E, Manz A, Widmer H M (1996) Continuous separation of high molecular weight compounds using a microliter volume free-flow electrophoresis microstructure. Anal Chem 68:2515–2522. (b) Xu Y, Zhang C X, Janasek D, Manz A (2003) Sub-second isoelectric focusing in free flow using a microfluidic device. Lab Chip 3:224–227. (c) Fonslow B R, Bowser M T (2005) Free-flow electrophoresis on an anodic bonded glass microchip. Anal Chem 77:5706–5710.Google Scholar
  14. 14.
    Fonslow BR, Bowser MT (2006) Using channel depth to isolate and control flow in a micro free-flow electrophoresis device. Anal Chem 78:8236–8244CrossRefGoogle Scholar
  15. 15.
    Köhler S, Weilbeer C, Howitz S, Becker H, Beushausen V, Belder D (2011) PDMS free-flow electrophoresis chips with integrated partitioning bars for bubble segregation. Lab Chip 11:309–314CrossRefGoogle Scholar
  16. 16.
    Song Y-A, Chan M, Celio C, Tannenbaum SR, Wishnok JS, Han J (2010) Free-flow zone electrophoresis of peptides and proteins in PDMS microchip for narrow pI range sample prefractionation coupled with mass spectrometry. Anal Chem 82:2317–2325CrossRefGoogle Scholar
  17. 17.
    a) Chen L, Lee S, Choo J, Lee E K (2008) Continuous dynamic flow micropumps for microfluid manipulation. J. Micromech. Microeng. 18:013001. b) Kohlheyer D, Eijkel J C T, van den Berg A, Schasfoort R B M (2008) Miniaturizing free-flow electrophoresis—a critical review. Electrophoresis 29(5, Sp. Iss. SI):977–993.Google Scholar
  18. 18.
    Revzin A, Russell RJ, Yadavalli VK, Koh WG, Deister C, Hile DD, Mellott MB, Pishko MV (2001) Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir 17:5440–5447CrossRefGoogle Scholar
  19. 19.
    Brzoska JB, Azouz IB, Rondelez F (1994) Silanization of solid substrates: a step toward reproducibility. Langmuir 10:4367–4373CrossRefGoogle Scholar
  20. 20.
    Köhler S, Benz C, Becker H, Beckert E, Beushausen V, Belder D (2011) Micro free-flow electrophoresis with injection molded chips. Submitted.Google Scholar
  21. 21.
    Belder D, Deege A, Maass M, Ludwig M (2002) Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis. Electrophoresis 23:2355–236CrossRefGoogle Scholar
  22. 22.
    Kohlheyer D, Eijkel JCT, Schlautmann S, van den Berg A, Schasfoort RBM (2008) Bubble-free operation of a microfluidic free-flow electrophoresis chip with integrated Pt electrodes. Anal Chem 80:4111–4118CrossRefGoogle Scholar
  23. 23.
    a) Fonslow B R, Bowser M T (2006) Optimizing band width and resolution in micro-free flow electrophoresis. Anal. Chem. 78(24):8236–8244. b) Krivankova L, Bocek P (1998) Continuous free-flow electrophoresis. Electrophoresis 19:1064–1074Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stefan Jezierski
    • 1
  • Leonid Gitlin
    • 1
  • Stefan Nagl
    • 1
  • Detlev Belder
    • 1
  1. 1.Institut für Analytische ChemieUniversität LeipzigLeipzigGermany

Personalised recommendations