Advertisement

Analytical and Bioanalytical Chemistry

, Volume 401, Issue 8, pp 2617–2630 | Cite as

Development and validation of a rapid method for microcystins in fish and comparing LC-MS/MS results with ELISA

  • Lucía Geis-Asteggiante
  • Steven J. LehotayEmail author
  • Laurie L. Fortis
  • George Paoli
  • Chandi Wijey
  • Horacio Heinzen
Original Paper

Abstract

Microcystins (MCs) are the most common cyanotoxins found worldwide in freshwater, brackish, and marine environments. The rapid and accurate analysis of MCs and nodularin (Nod-R) in fish tissue is important for determining occurrence, following trends, and monitoring exposure for risk assessment and other purposes. The aim of this study was to develop a streamlined and reliable sample preparation method for eight MCs (MC-RR, MC-YR, MC-LR, MC-WR, MC-LA, MC-LY, MC-LW, and MC-LF) and Nod-R in fish, and conduct a validation of the new method using liquid chromatography–tandem mass spectrometry (LC-MS/MS) for analysis and compare the results with a commercial enzyme-linked immunosorbent assay (ELISA) kit. Different sample preparation methods were compared, and a simple extraction protocol with acidified acetonitrile/water (3:1) followed by hexane partitioning cleanup was found to be most effective. Thorough validation of the final method was conducted, and 90–115% recoveries were achieved for all analytes except for MC-RR, which gave 130% average recovery (isotopically labeled internal standards were unavailable to correct for possible biases). The use of electrospray ionization in the negative mode gave few interferences and minimal matrix effects in the LC-MS/MS analysis overall. Precision was typically 10–20% RSD among multiple days in experiments, detection limits were <10 ng/g in the fish tissue (catfish, basa, and swai filets), and no false-positives or false-negatives occurred in blind analyses of many spiked samples. The ELISA was unable to distinguish between MCs but was found to correctly assess the presence or absence of MCs and Nod-R in the blind-fortified fish tissues. The capability of these approaches to measure covalently bound MCs was not assessed.

Keywords

Microcystins LC-MS/MS ELISA Fish tissue Validation 

Notes

Acknowledgments

We thank Jennifer Cassidy and Kathleen Rajkowski for providing the different fish samples, Alan Lightfield for his support in LC-MS/MS usage, and Fernando Rubio of Abraxis for consultation about microcystins and ELISA. This research was funded in part by the USDA Food Safety Inspection Service ARS agreement number 60-1935-9-031 and the US–Israel Binational Agricultural Research and Development Fund number US-4273-09.

Supplementary material

216_2011_5345_MOESM1_ESM.pdf (497 kb)
Supplementary material, approximately 509 KB.
216_2011_5100_MOESM2_ESM.zip (7 mb)
Supplementary material, approximately 7.02 MB.

References

  1. 1.
    Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, LondonGoogle Scholar
  2. 2.
    Carmichel WW (1994) The toxins of cyanobacteria. Sci Am 270:78–86CrossRefGoogle Scholar
  3. 3.
    Meriluoto J, Codd GA (2005) Toxic: cyanobacterial monitoring and analysis. Åbo Akademi University Press, Finland, p 15Google Scholar
  4. 4.
    Zhang L, Ping X, Yang Z (2004) Talanta 62:193–200Google Scholar
  5. 5.
    Spoof L, Neffling M-R, Meriluoto J (2009) J Chromatogr B 877:3822–3830CrossRefGoogle Scholar
  6. 6.
    Chorus I, Bartram J (1999) Toxic cyanobacteria in water—a guide to their public health consequences, monitoring and management. E & FN Spon. Published on behalf of World Health Organization, LondonCrossRefGoogle Scholar
  7. 7.
    Codd GA, Lindsay J, Young FM, Morrison LF, Metcalf JS (2005) From mass mortalities to management measures. In: Huisman J, Matthijs HCP, Visser PM (eds) Harmful cyanobacteria. Springer, Aquatic Ecology Series, pp 1–23CrossRefGoogle Scholar
  8. 8.
    Smith JL, Boyer GL (2009) Toxicon 53:238–245CrossRefGoogle Scholar
  9. 9.
    Lance E, Neffling M-N, Gérard C, Meriluoto J, Bormans M (2010) Environ Pollut 158:674–680CrossRefGoogle Scholar
  10. 10.
    WHO (1998) Guidelines for drinking water quality. World Health Organization, GenevaGoogle Scholar
  11. 11.
    Amorim A, Vasconcelos V (1999) Toxicon 37:1041–1052CrossRefGoogle Scholar
  12. 12.
    Tencalla F, Dietrich D (1997) Toxicon 35:583–595CrossRefGoogle Scholar
  13. 13.
    Thostrup L, Christoffersen K (1999) Arch Hydrobiol 145(4):447–467Google Scholar
  14. 14.
    Vasconcelos VM (1995) Aquat Toxicol 32:227–237CrossRefGoogle Scholar
  15. 15.
    Deblois CP, Giani A, Bird DF (2011) Aquat Toxicol 103:63–70CrossRefGoogle Scholar
  16. 16.
    Deblois CP, Aranda-Rodriguez R, Giani A, Bird DF (2008) Toxicon 51:435–448CrossRefGoogle Scholar
  17. 17.
    Magalhães VF, Moraes SR, Azevedo S (2001) Toxicon 39:1077–1085CrossRefGoogle Scholar
  18. 18.
    Yokoyama A, Park HD (2002) Environ Toxicol 17:424–433CrossRefGoogle Scholar
  19. 19.
    Zurawell RW, Kotak BG, Prepas EE (1999) Freshw Biol 42:707–718CrossRefGoogle Scholar
  20. 20.
    Chen J, Xie P (2005) Toxicon 45:615–625CrossRefGoogle Scholar
  21. 21.
    MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) FEBS Lett 264(2):187–192CrossRefGoogle Scholar
  22. 22.
    Zhang D, Ping X, Chen J (2010) Bull Environ Contam Toxicol 84:202–207CrossRefGoogle Scholar
  23. 23.
    Soares RM, Magalhaes VF, Azevedo SMFO (2004) Aquat Toxicol 70:1–10CrossRefGoogle Scholar
  24. 24.
    Karlsson KM, Spoof L, Meriluoto JA (2005) Environ Toxicol 20(3):381–389CrossRefGoogle Scholar
  25. 25.
    Kohoutek J, Adamovsky M, Oravec M, Simek Z, Palikova M, Kopp R, Blaha L (2010) Anal Bioanal Chem 398:1231–1237CrossRefGoogle Scholar
  26. 26.
    Moreno IM (2005) J Chromatogr A 1080:199–203CrossRefGoogle Scholar
  27. 27.
    Mohamed ZA, Carmichael WW, Hussein AA (2003) Environ Toxicol 18:137–141CrossRefGoogle Scholar
  28. 28.
    Xie L, Xie P, Ozawa K, Li L, Honma T, Yokoyama A, Park HD (2004) Environ Pollut 127:431–439CrossRefGoogle Scholar
  29. 29.
    Xie L, Park H-D (2007) Aquaculture 271:530–536CrossRefGoogle Scholar
  30. 30.
    Xie LQ, Xie P, Guo LG, Li L, Miyabara Y, Park HD (2005) Environ Toxicol 20:293–300CrossRefGoogle Scholar
  31. 31.
    Adamovsky O, Kopp R, Hilscherova K, Babica P, Palikova M, Paskova V, Navratil S, Marsalek B, Blaha L (2007) Environ Toxicol Chem 26:2687–2693CrossRefGoogle Scholar
  32. 32.
    Li XY, Chung IK, Kim JI, Lee JA, Sivonen K, Lahti K (2004) Toxicon 44:821–827CrossRefGoogle Scholar
  33. 33.
    Rapala J, Erkomaa K, Kukkonen (2002) J Anal Chim Acta 466:213–231CrossRefGoogle Scholar
  34. 34.
    Gago-Martinez A, Leao JM, Pineiro N, Carballal E, Vaquero E, Nogueiras M, Rodriguez-Vazquez JA (2003) J Environ Anal Chem 83:443–456CrossRefGoogle Scholar
  35. 35.
    Gago-Martinez A, Pineiro N, Aguete EC, Vaquero E, Nogueiras M, Leao JM, Rodriguez-Vazquez JA (2003) J Chromatogr A 992:159–168CrossRefGoogle Scholar
  36. 36.
    Zimba PV, Camus A, Allen EH, Burkholder JM (2006) Aquaculture 261:1048–1055CrossRefGoogle Scholar
  37. 37.
    Neffling M-R, Spoof L, Quilliam M, Meriluoto J (2010) J Chromatogr B 878:2433–2441CrossRefGoogle Scholar
  38. 38.
    Anastassiades M, Lehotay SJ, Stajnbaher D, Schenk FJ (2003) J AOAC Int 86:412–431Google Scholar
  39. 39.
    Schneider MJ, Mastovska K, Lehotay SJ, Lightfield AR, Kinsella B, Shultz CE (2009) Anal Chim Acta 637:290–297CrossRefGoogle Scholar
  40. 40.
    Mol H, Plaza-Bolaños P, Zomer P, de Rijk TC, Stolker A, Mulder P (2008) Anal Chem 80:9450–9459CrossRefGoogle Scholar
  41. 41.
    Bruker Daltonics (2001) Identification and quantification of microcystins in water samples or extracts from cyanobacterias using LC-ESI Ion Trap MS. Esquire series. Application Note #LCMS-17.Google Scholar
  42. 42.
    Gjølme N, Utkilen H (1996) Phycologia 35:80–82CrossRefGoogle Scholar
  43. 43.
    Hyenstrand P, Metcalf JS, Beattie KA, Codd GA (2001) Wat Res 35:3508–3511CrossRefGoogle Scholar
  44. 44.
    Kinsella B, Lehotay SJ, Mastovska K, Lightfield AR, Furey A, Danaher M (2009) Anal Chim Acta 637:196–207CrossRefGoogle Scholar
  45. 45.
    Sano T, Takagi H, Nagano K, Nishikawa M, Kaya K (2011) Anal Bioanal Chem 399:2511–2516CrossRefGoogle Scholar
  46. 46.
    Jacobs HL, Kahn HD, Stralka KA, Phan DB (1998) Risk Anal 18(3):283–291CrossRefGoogle Scholar
  47. 47.
    National Marine Fisheries Service, NOAA (2005) Fisheries of the United States2005 http://www.st.nmfs.noaa.gov/st1/fus/fus05/08_perita2005.pdf Accessed on: 10 May 2011.
  48. 48.
    National Marine Fisheries Service, NOAA (2009). Fisheries of the United States2009 http://www.st.nmfs.noaa.gov/st1/fus/fus09/08_perita2009.pdf Accessed on: 10 May 2011.
  49. 49.
    Dietrich D, Hoeger S (2005) Toxicol Appl Pharmacol 203:273–289CrossRefGoogle Scholar
  50. 50.
    Lehotay SJ, Mastovska K, Amirav A, Fialkov AB, Alon T, de Martos PA, Kok A, Fernandez-Alba AR (2008) Trends Anal Chem 27:1070–1090CrossRefGoogle Scholar
  51. 51.
    Chen J, Xie P (2005) Environ Toxicol 20:572–584CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Lucía Geis-Asteggiante
    • 1
    • 2
  • Steven J. Lehotay
    • 1
    Email author
  • Laurie L. Fortis
    • 1
    • 3
  • George Paoli
    • 1
  • Chandi Wijey
    • 1
  • Horacio Heinzen
    • 2
  1. 1.Agricultural Research Service, Eastern Regional Research CenterUS Department of AgricultureWyndmoorUSA
  2. 2.Cátedra de Farmacognosia y Productos Naturales, DQO, Facultad de QuímicaUdelaRMontevideoUruguay
  3. 3.USDA National Institute of Food and AgricultureWashingtonUSA

Personalised recommendations