Analytical and Bioanalytical Chemistry

, Volume 402, Issue 1, pp 77–81 | Cite as

Hydrodynamic chromatography: packed columns, multiple detectors, and microcapillaries

  • André M. Striegel


Hydrodynamic chromatography (HDC) is a liquid chromatographic technique that separates analytes on the basis of their size in solution. Separation can be conducted either in an open tube or in a column packed with inert, nonporous beads. In HDC, larger analytes elute first and smaller ones later, due to preferential sampling of the streamlines of flow in the open tube or in the interstitial medium of the packed column. Because of the low shear rates experienced in HDC, coupled with the wealth of information obtained when employing a multiplicity of detection methods, the technique has experienced a resurgence in recent years in both the particle sizing and macromolecular arenas, where it can provide information on the mutual interdependence of molar mass, size, shape, and compactness. Additionally, microcapillary HDC is also gaining popularity amongst the bioanalytical community, who have employed the technique, inter alia, to separate DNA fragments over a base pair range spanning four orders in magnitude. Here, examples from the literature are used to show how HDC has been applied in each of the aforementioned areas, explaining the information that can be obtained from various detector combinations, and opining on the future of the technique.


Hydrodynamic chromatography Multiple detection Packed columns Microcapillaries Particle sizing Polymers DNA 


  1. 1.
    McHugh AJ (1984) CRC Crit Rev Anal Chem 15:63–117CrossRefGoogle Scholar
  2. 2.
    Striegel AM, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Small H (1974) J Colloid Interface Sci 48:147–161CrossRefGoogle Scholar
  4. 4.
    DiMarzio EA, Guttman CM (1970) Macromolecules 3:131–146CrossRefGoogle Scholar
  5. 5.
    Bos J, Tijssen R (1995) In: Adlard ER (ed) Chromatography in the petroleum industry (J Chromatogr Library 56). Elsevier, Amsterdam, pp 95–126Google Scholar
  6. 6.
    Striegel AM (2008) Anal Bioanal Chem 390:303–305CrossRefGoogle Scholar
  7. 7.
    Striegel AM (2005) Anal Chem 77:104A–113ACrossRefGoogle Scholar
  8. 8.
    Striegel AM (ed) (2005) Multiple detection in size-exclusion chromatography (ACS Symp Ser 893). American Chemical Society, Washington, DCGoogle Scholar
  9. 9.
    Brewer AK, Striegel AM (2009) Anal Bioanal Chem 393:295–302CrossRefGoogle Scholar
  10. 10.
    Brewer AK, Striegel AM (2010) J Sep Sci 33:3555–3563CrossRefGoogle Scholar
  11. 11.
    Brewer AK, Striegel AM (2011) Analyst 136:515–519CrossRefGoogle Scholar
  12. 12.
    Brewer AK, Striegel AM (2011) Anal Bioanal Chem 399:1507–1514CrossRefGoogle Scholar
  13. 13.
    Brewer AK, Striegel AM (2011) Anal Chem 83:3068–3075CrossRefGoogle Scholar
  14. 14.
    Burchard W (1999) Adv Polym Sci 143:113–194CrossRefGoogle Scholar
  15. 15.
    Ostlund SG, Striegel AM (2008) Polym Degrad Stab 93:1510–1514CrossRefGoogle Scholar
  16. 16.
    Haidar Ahmad IA, Striegel DA, Striegel AM (2011) Polymer 52:1268–1277CrossRefGoogle Scholar
  17. 17.
    Roovers J (1999) In: Mishra MK, Kobayashi S (eds) Star and hyperbranched polymers. Marcel Dekker, New York, pp 285–341CrossRefGoogle Scholar
  18. 18.
    Barth HG, Carlin FJ Jr (1984) J Liq Chromatogr 7:1717–1738CrossRefGoogle Scholar
  19. 19.
    Striegel AM (2008) J Liq Chromatogr Rel Technol 31:3105–3114CrossRefGoogle Scholar
  20. 20.
    Striegel AM, Isenberg SL, Côté GL (2009) Anal Bioanal Chem 394:1887–1893CrossRefGoogle Scholar
  21. 21.
    Isenberg SL, Brewer AK, Côté GL, Striegel AM (2010) Biomacromolecules 11:2505–2511CrossRefGoogle Scholar
  22. 22.
    Klavons JA, Dintzis FR, Millard MM (1997) Cereal Chem 74:832–836CrossRefGoogle Scholar
  23. 23.
    Rolland-Sabaté A, Guilois S, Jaillais B, Colonna P (2011) Anal Bioanal Chem 399:1493–1505CrossRefGoogle Scholar
  24. 24.
    Langhorst MA, Stanley FW Jr, Cutié SS, Sugarman JH, Wilson LR, Hoagland DA, Prud’homme RK (1986) Anal Chem 58:2242–2247CrossRefGoogle Scholar
  25. 25.
    Liu Y, Radke W, Pasch H (2005) Macromolecules 38:7476–7484CrossRefGoogle Scholar
  26. 26.
    Liu Y, Radke W, Pasch H (2006) Macromolecules 39:2004–2006CrossRefGoogle Scholar
  27. 27.
    Yau WW, Kirkland JJ (1981) J Chromatogr 218:217–238CrossRefGoogle Scholar
  28. 28.
    Stegeman G, van Asten AC, Kraak JC, Poppe H, Tijssen R (1994) Anal Chem 66:1147–1160CrossRefGoogle Scholar
  29. 29.
    Gilbert RG (2011) Anal Bioanal Chem 399:1425–1438CrossRefGoogle Scholar
  30. 30.
    Wang X, Veerappan V, Cheng C, Jiang X, Allen RD, Dasgupta PK, Liu S (2010) J Am Chem Soc 132:40–41CrossRefGoogle Scholar
  31. 31.
    Liu KJ, Rane TD, Zhang Y, Wang T-H (2011) J Am Chem Soc 133:6898–6901CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Chemistry & BiochemistryFlorida State UniversityTallahasseeUSA

Personalised recommendations