Advertisement

Analytical and Bioanalytical Chemistry

, Volume 402, Issue 1, pp 129–138 | Cite as

DNA-templated fluorescent silver nanoclusters

  • Bingyan Han
  • Erkang WangEmail author
Review

Abstract

In this review, we discuss the synthesis and applications of DNA-templated fluorescent silver nanoclusters in aqueous solution. Various oligonucleotide sequences or conformations have been utilized to synthesize silver nanoclusters with excellent fluorescence properties. The range of applications has expanded greatly, from live cell staining and the detection of metal ions and small biomolecules to the detection of DNA or proteins.

Keywords

Silver nanoclusters Oligonucleotides DNA Fluorescence 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China, grant nos. 21075120 and 20890020, and 973 projects 2009CB930100 and 2010CB933600.

References

  1. 1.
    Wilcoxon JP, Abrams BL (2006) Chem Soc Rev 35:1162–1194CrossRefGoogle Scholar
  2. 2.
    Xu HX, Suslick KS (2010) Adv Mater 22:1078–1082CrossRefGoogle Scholar
  3. 3.
    Lin C-AJ (2009) J Med Biol Eng 29:276–283Google Scholar
  4. 4.
    Ras RHA, Diez I (2011) Nanoscale 3:1963–1970CrossRefGoogle Scholar
  5. 5.
    Shen Z, Duan HW, Frey H (2007) Adv Mater 19:349–352CrossRefGoogle Scholar
  6. 6.
    Diez I, Pusa M, Kulmala S, Jiang H, Walther A, Goldmann AS, Muller AHE, Ikkala O, Ras RHA (2009) Angew Chem Int Edit 48:2122–2125CrossRefGoogle Scholar
  7. 7.
    Liu SH, Lu F, Zhu JJ (2011) Chem Commun 47:2661–2663CrossRefGoogle Scholar
  8. 8.
    Adhikari B, Banerjee A (2010) Chem Mater 22:4364–4371CrossRefGoogle Scholar
  9. 9.
    Cathcart N, Kitaev V (2010) J Phys Chem C 114:16010–16017CrossRefGoogle Scholar
  10. 10.
    Petty JT, Zheng J, Hud NV, Dickson RM (2004) J Am Chem Soc 126:5207–5212CrossRefGoogle Scholar
  11. 11.
    Makarava N, Parfenov A, Baskakov IV (2005) Biophys J 89:572–580CrossRefGoogle Scholar
  12. 12.
    Yu J, Patel SA, Dickson RM (2007) Angew Chem Int Edit 46:2028–2030CrossRefGoogle Scholar
  13. 13.
    Narayanan SS, Pal SK (2008) J Phys Chem C 112:4874–4879CrossRefGoogle Scholar
  14. 14.
    Guo CL, Irudayaraj J (2011) Anal Chem 83:2883–2889CrossRefGoogle Scholar
  15. 15.
    Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A, Lo Nostro P, Canton P, Baglioni P (2008) J Phys Chem C 112:11758–11766CrossRefGoogle Scholar
  16. 16.
    Shang L, Dong SJ (2008) Chem Commun 1088–1090Google Scholar
  17. 17.
    Linnert T, Mulvaney P, Henglein A, Weller H (1990) J Am Chem Soc 112:4657–4664CrossRefGoogle Scholar
  18. 18.
    Ershov BG, Henglein A (1998) J Phys Chem B 102:10663–10666CrossRefGoogle Scholar
  19. 19.
    Zheng J, Dickson RM (2002) J Am Chem Soc 124:13982–13983CrossRefGoogle Scholar
  20. 20.
    Berti L, Alessandrini A, Facci P (2005) J Am Chem Soc 127:11216–11217CrossRefGoogle Scholar
  21. 21.
    Richards CI, Choi S, Hsiang JC, Antoku Y, Vosch T, Bongiorno A, Tzeng YL, Dickson RM (2008) J Am Chem Soc 130:5038–5039CrossRefGoogle Scholar
  22. 22.
    Xu HX, Suslick KS (2010) ACS Nano 4:3209–3214CrossRefGoogle Scholar
  23. 23.
    Richter J, Seidel R, Kirsch R, Mertig M, Pompe W, Plaschke J, Schackert HK (2000) Adv Mater 12:507–510CrossRefGoogle Scholar
  24. 24.
    Monson CF, Woolley AT (2003) Nano Lett 3:359–363CrossRefGoogle Scholar
  25. 25.
    Seidel R, Ciacchi LC, Weigel M, Pompe W, Mertig M (2004) J Phys Chem B 108:10801–10811CrossRefGoogle Scholar
  26. 26.
    Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamoto I, Tanaka Y (2008) Chem Commun 4825–4827Google Scholar
  27. 27.
    Tanaka K, Yamada Y, Shionoya M (2002) J Am Chem Soc 124:8802–8803CrossRefGoogle Scholar
  28. 28.
    Gwinn EG, O’Neill P, Guerrero AJ, Bouwmeester D, Fygenson DK (2008) Adv Mater 20:279–283CrossRefGoogle Scholar
  29. 29.
    Patel SA, Cozzuol M, Hales JM, Richards CI, Sartin M, Hsiang JC, Vosch T, Perry JW, Dickson RM (2009) J Phys Chem C 113:20264–20270CrossRefGoogle Scholar
  30. 30.
    Koszinowski K, Ballweg K (2010) Chem Eur J 16:3285–3290CrossRefGoogle Scholar
  31. 31.
    De Souza N (2007) Nat Meth 4:540–540CrossRefGoogle Scholar
  32. 32.
    Vosch T, Antoku Y, Hsiang JC, Richards CI, Gonzalez JI, Dickson RM (2007) Proc Natl Acad Sci USA 104:12616–12621CrossRefGoogle Scholar
  33. 33.
    Ritchie CM, Johnsen KR, Kiser JR, Antoku Y, Dickson RM, Petty JT (2007) J Phys Chem C 111:175–181CrossRefGoogle Scholar
  34. 34.
    Sengupta B, Ritchie CM, Buckman JG, Johnsen KR, Goodwin PM, Petty JT (2008) J Phys Chem C 112:18776–18782Google Scholar
  35. 35.
    Sengupta B, Springer K, Buckman JG, Story SP, Abe OH, Hasan ZW, Prudowsky ZD, Rudisill SE, Degtyareva NN, Petty JT (2009) J Phys Chem C 113:19518–19524CrossRefGoogle Scholar
  36. 36.
    Guo WW, Yuan JP, Dong QZ, Wang EK (2010) J Am Chem Soc 132:932–934CrossRefGoogle Scholar
  37. 37.
    Yeh HC, Sharma J, Han JJ, Martinez JS, Werner JH (2010) Nano Lett 10:3106–3110CrossRefGoogle Scholar
  38. 38.
    Sharma J, Yeh HC, Yoo H, Werner JH, Martinez JS (2010) Chem Commun 46:3280–3282CrossRefGoogle Scholar
  39. 39.
    Guo WW, Yuan JP, Wang EK (2009) Chem Commun 3395–3397Google Scholar
  40. 40.
    Lan GY, Huang CC, Chang HT (2010) Chem Commun 46:1257–1259CrossRefGoogle Scholar
  41. 41.
    Su YT, Lan GY, Chen WY, Chang HT (2010) Anal Chem 82:8566–8572CrossRefGoogle Scholar
  42. 42.
    Han BY, Wang EK (2011) Biosens Bioelectron 26:2585–2589CrossRefGoogle Scholar
  43. 43.
    Huang ZZ, Lin YH, Ren JS, Qu XG (2011) Chem Commun 47:3487–3489CrossRefGoogle Scholar
  44. 44.
    Lan GY, Chen WY, Chang HT (2011) Biosens Bioelectron 26:2431–2435CrossRefGoogle Scholar
  45. 45.
    Martinez JS, Sharma J, Yeh HC, Yoo H, Werner JH (2011) Chem Commun 47:2294–2296CrossRefGoogle Scholar
  46. 46.
    Choi SM, Yu JH, Patel SA, Tzeng YL, Dickson RM (2011) Photochem Photobiol Sci 10:109–115CrossRefGoogle Scholar
  47. 47.
    Petty JT, Fan CY, Story SP, Sengupta B, Iyer AS, Prudowsky Z, Dickson RM (2010) J Phys Chem Lett 1:2524–2529CrossRefGoogle Scholar
  48. 48.
    Patel SA, Richards CI, Hsiang JC, Dickson RM (2008) J Am Chem Soc 130:11602–11603CrossRefGoogle Scholar
  49. 49.
    Loo K, Degtyareva N, Park J, Sengupta B, Reddish M, Rogers CC, Bryant A, Petty JT (2010) J Phys Chem B 114:4320–4326CrossRefGoogle Scholar
  50. 50.
    Huang ZZ, Pu F, Hu D, Wang CY, Ren JS, Qu XG (2011) Chem Eur J 17:3774–3780CrossRefGoogle Scholar
  51. 51.
    O’Neill PR, Velazquez LR, Dunn DG, Gwinn EG, Fygenson DK (2009) J Phys Chem C 113:4229–4233CrossRefGoogle Scholar
  52. 52.
    Zhou ZX, Du Y, Dong SJ Biosens Bioelectron in pressGoogle Scholar
  53. 53.
    Yu JH, Choi SM, Richards CI, Antoku Y, Dickson RM (2008) Photochem Photobiol 84:1435–1439Google Scholar
  54. 54.
    Yu JH, Choi S, Dickson RM (2009) Angew Chem Int Edit 48:318–320CrossRefGoogle Scholar
  55. 55.
    Li T, Zhang LB, Ai J, Dong SJ, Wang EK ACS Nano in pressGoogle Scholar
  56. 56.
    Antoku Y, Hotta J, Mizuno H, Dickson RM, Hofkens J, Vosch T (2010) Photochem Photobiol Sci 9:716–721CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of SciencesGraduate School of the Chinese Academy of SciencesChangchunChina

Personalised recommendations