Advertisement

Analytical and Bioanalytical Chemistry

, Volume 402, Issue 8, pp 2625–2631 | Cite as

Fluorescence dye as novel label molecule for quantitative SERS investigations of an antibiotic

  • Anne März
  • Sabine Trupp
  • Petra Rösch
  • Gerhard J. Mohr
  • Jürgen Popp
Original Paper

Abstract

Within this contribution, the proof-of-principle for a new concept for indirect surface-enhanced Raman spectroscopy (SERS) detection is presented. The fluorescence dye FR-530 is applied as a label molecule for the antibiotic erythromycin. The antibiotic binds directly to the label molecule. Changes within the SERS spectrum of the fluorescence dye appearing with the presence of the antibiotic are utilized for the detection and quantitative investigations of erythromycin. With the new concept of binding the label molecule directly to the analyte molecule, the application of linkage compounds like antibodies or any other recognition molecules becomes dispensable.

Keywords

SERS Label molecules Antibiotic Microfluidic 

Notes

Acknowledgements

We gratefully acknowledge the Free State of Thuringia and the European Union (EFRE) for financial support under support code 2008FE9112 (BioOptiSens). We thank the microfluidic group of the IPHT for providing the lab-on-a-chip devices for the measurements. S. Trupp and G. J. Mohr were kindly supported by the Bayerische Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie within project AZ-Nr.: 20.10-3410-2 (Projekt Sensormaterialien).

Supplementary material

216_2011_5273_MOESM1_ESM.pdf (258 kb)
Supplementary material Fig. S1–S3 (PDF 258 kb)

References

  1. 1.
    März A, Mönch B, Rösch P, Kiehntopf M, Henkel T, Popp J (2011) Detection of thiopurine methyltransferase activity in lysed red blood cells by means of lab-on-a-chip surface-enhanced Raman spectroscopy (LOC-SERS). Anal Bioanal Chem 400:2755–2761CrossRefGoogle Scholar
  2. 2.
    Nabiev I, Chourpa I, Manfait M (1994) Applications of Raman and surface-enhanced Raman-scattering spectroscopy in medicine. J Raman Spectrosc 25(1):13–23CrossRefGoogle Scholar
  3. 3.
    Schmitt M, Popp J (2006) Raman spectroscopy at the beginning of the twenty-first century. J Raman Spectrosc 37(1–3):20–28CrossRefGoogle Scholar
  4. 4.
    Kerker M, Wang D-S, Chew H (1980) Surface enhanced Raman scattering (SERS) by molecules absorbed at spherical particles: errata. Appl Opt 19(24):4159–4173CrossRefGoogle Scholar
  5. 5.
    Otto A (1991) Surface-enhanced Raman scattering of adsorbates. J Raman Spectrosc 22:743–752CrossRefGoogle Scholar
  6. 6.
    Schatz GC, Van Duyne RP (2002) Electromagnetic mechanism of surface-enhanced spectroscopy. In: Chalmers G (ed) Handbook of vibrational spectroscopy, vol 1. Wiley, Chichester, pp 759–774Google Scholar
  7. 7.
    Driskell JD, Tripp RA (2010) Label-free SERS detection of microRNA based on affinity for an unmodified silver nanorod array substrate. Chem Commun (Camb) 46(19):3298–3300CrossRefGoogle Scholar
  8. 8.
    Doering WE, Nie SM (2003) Spectroscopic tags using dye-embedded nanoparticies and surface-enhanced Raman scattering. Anal Chem 75(22):6171–6176CrossRefGoogle Scholar
  9. 9.
    Han XX, Zhao B, Ozaki Y (2009) Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem 394(7):1719–1727CrossRefGoogle Scholar
  10. 10.
    Cao YC, Jin RC, Nam JM, Thaxton CS, Mirkin CA (2003) Raman dye-labeled nanoparticle probes for proteins. J Am Chem Soc 125(48):14676–14677CrossRefGoogle Scholar
  11. 11.
    Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75(21):5936–5943CrossRefGoogle Scholar
  12. 12.
    Liu XJ, Knauer M, Ivleva NP, Niessner R, Haisch C (2010) Synthesis of core–shell surface-enhanced Raman tags for bioimaging. Anal Chem 82(1):441–446CrossRefGoogle Scholar
  13. 13.
    Küstner B, Gellner M, Schütz M, Schöppler F, Marx A, Ströbel P, Adam P, Schmuck C, Schlücker S (2009) SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells. Angew Chem Int Ed 48(11):1950CrossRefGoogle Scholar
  14. 14.
    Graham D, Mallinder BJ, Smith WE (2000) Detection and identification of labeled DNA by surface enhanced resonance Raman scattering. Biopolymers 57(2):85–91CrossRefGoogle Scholar
  15. 15.
    Vo-Dinh T, Yan F, Wabuyele MB (2005) Surface-enhanced Raman scattering for medical diagnostics and biological imaging. J Raman Spectrosc 36(6–7):640–647CrossRefGoogle Scholar
  16. 16.
    Vo-Dinh T, Houck K, Stokes DL (1994) Surface-enhanced Raman gene probes. Anal Chem 66(20):3379–3383CrossRefGoogle Scholar
  17. 17.
    Hering KK, Moller R, Fritzsche W, Popp J (2008) Microarray-based detection of dye-labeled DNA by SERRS using particles formed by enzymatic silver deposition. Chemphyschem 9(6):867–872CrossRefGoogle Scholar
  18. 18.
    Wang G, Lim C, Chen L, Chon H, Choo J, Hong J, deMello AJ (2009) Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury(II) ions. Anal Bioanal Chem 394(7):1827–1832CrossRefGoogle Scholar
  19. 19.
    Zhang DM, Vangala K, Li SY, Yanney M, Xia H, Zou S, Sygula A (2011) Acid cleavable surface enhanced Raman tagging for protein detection. Analyst 136(3):520–526CrossRefGoogle Scholar
  20. 20.
    Ando RA, Pieczonka NPW, Santos PS, Aroca RF (2009) Chromic materials for responsive surface-enhanced resonance Raman scattering systems: a nanometric pH sensor. Phys Chem Chem Phys 11(34):7505–7508CrossRefGoogle Scholar
  21. 21.
    Hu JW, Zhao B, Xu WQ, Li BF, Fan YG (2002) Surface-enhanced Raman spectroscopy study on the structure changes of 4-mercaptopyridine adsorbed on silver substrates and silver colloids. Spectrochimica Acta Part A—Molecular and Biomolecular Spectroscopy 58(13):2827–2834CrossRefGoogle Scholar
  22. 22.
    Wang ZY, Bonoiu A, Samoc M, Cui YP, Prasad PN (2008) Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol–silver probe. Biosens Bioelectron 23(6):886–891CrossRefGoogle Scholar
  23. 23.
    Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395CrossRefGoogle Scholar
  24. 24.
    Trupp S, Schweitzer A, Mohr GJ (2006) A fluorescent water-soluble naphthalimide-based receptor for saccharides with highest sensitivity in the physiological pH range. Org Biomol Chem 4:2965–2968CrossRefGoogle Scholar
  25. 25.
    März A, Ackermann KR, Malsch D, Bocklitz T, Henkel T, Popp J (2009) Towards a quantitative SERS approach—online monitoring of analytes in a microfluidic system with isotope-edited internal standards. J Biophoton 2(4):232–242CrossRefGoogle Scholar
  26. 26.
    Walter A, März A, Schumacher W, Rösch P, Popp J (2011) Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab on a Chip 11:1013–1021CrossRefGoogle Scholar
  27. 27.
    The R Development Core Team R (2008) A language and environment for statistical computing. Vienna, AustriaGoogle Scholar
  28. 28.
    Wulff G (1982) Selective binding to polymers via covalent bonds—the construction of chiral cavities as specific receptor-sites. Pure Appl Chem 54(11):2093–2102CrossRefGoogle Scholar
  29. 29.
    Bosch LI, Mahon MF, James TD (2004) The B–N bond controls the balance between locally excited (LE) and twisted internal charge transfer (TICT) states observed for aniline based fluorescent saccharide sensors. Tetrahedron Lett 45(13):2859–2862CrossRefGoogle Scholar
  30. 30.
    Menendez JR, Obuchowska A, Aroca R (1996) Infrared spectra and surface enhanced Raman scattering of naphthalimide on colloidal silver. Spectrochimica Acta Part A—Molecular and Biomolecular Spectroscopy 52(3):329–336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Anne März
    • 1
  • Sabine Trupp
    • 2
  • Petra Rösch
    • 1
  • Gerhard J. Mohr
    • 2
  • Jürgen Popp
    • 1
    • 3
  1. 1.Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich-Schiller University JenaJenaGermany
  2. 2.Fraunhofer Research Institution for Modular Solid-State Technologies EMFTWorkgroup Sensor MaterialsRegensburgGermany
  3. 3.Institute of Photonic Technology (IPHT)JenaGermany

Personalised recommendations