Advertisement

Analytical and Bioanalytical Chemistry

, Volume 402, Issue 4, pp 1493–1503 | Cite as

Provenance studies on Dead Sea scrolls parchment by means of quantitative micro-XRF

  • Timo WolffEmail author
  • Ira Rabin
  • Ioanna Mantouvalou
  • Birgit Kanngießer
  • Wolfgang Malzer
  • Emanuel Kindzorra
  • Oliver Hahn
Original Paper

Abstract

In this study, we address the question of the provenance and origin of the Dead Sea Scrolls manuscripts. A characteristic low ratio of chlorine to bromine, corresponding to that of the Dead Sea water, may serve as an indicator for local production. For this aim we developed a non-destructive procedure to determine the Cl/Br ratio in the parchment of these manuscripts. Micro-X-ray fluorescence (μ-XRF) measurements of a large number of parchment and leather fragments from the Dead Sea Scrolls were analyzed with a routine we developed based on fundamental parameter quantification. This routine takes into account the absorption of the collagen matrix and the influence of the different sample thicknesses. To calculate the representative Cl/Br ratio for each fragment, we investigated the lateral homogeneity and determined the total mass deposition using the intensity of the inelastically scattered, characteristic tube radiation. The distribution of the Cl/Br ratios thus obtained from the μ-XRF measurements make it possible to distinguish fragments whose origin lies within the Dead Sea region from those produced in other locations.

Figure

Quantitative mikro-XRF permits the determination of the Cl/Br-ratio in ancient Dead Sea scrolls parchment. The picture shows a fragment from the Genesis Apocryphon Scroll 1Q GenAp.(courtesy of Israel Museum)

Keywords

Fundamental parameter quantification Samples of intermediated thickness Chlorine to bromine ratio Scatter peak evaluation Dark matrix Inorganic traces 

Notes

Acknowledgments

The Dead Sea Scrolls Research Project is funded by the Stiftung Preussischer Kulturbesitz. We are grateful to J. Hodgson from the John Rylands University Library and A. Roitman from the Shrine of the Book for permission to study the fragments, to I. Lewitt, G. Benett, and M. Maggen for the documentation on the scrolls, to R. Franke for preparation of the sample holders, to E. Labsch for the CHN analysis of the fragments, to G. Weinberg for the ESEM-EDX analyses, to O. Yoffe for the analysis of the DS water, and to A. Gregor for help with the measurements. We would also like to thank M. Broshi, G. Brooke, E. Tov, M. Stone, D. Stoekl, L. Halicz, and I. Gavrieli for discussions and suggestions of the relevant literature, B. Gillo and S. Pfann for the field trips to the find sites, and M. Binetti for the revision of the manuscript.

References

  1. 1.
    Ullmann-Margalit E (2006) Out of the cave: a philosophical inquiry into the Dead Sea scrolls research. Harvard University PressGoogle Scholar
  2. 2.
    Hahn O, Wolff T, Kanngießer B, Malzer W, Mantouvalou I (2007) Non-destructive investigation of the scroll material: “4Qcomposition concerning divine providence”(4Q413). Dead Sea Discoveries 14(3):359–364CrossRefGoogle Scholar
  3. 3.
    Reed SA (2007) Find-sites of the Dead Sea scrolls. Dead Sea Discoveries 14(2):199–221CrossRefGoogle Scholar
  4. 4.
    Tov E (2009) Scribal practices and approaches reflected in the texts found in the Judean Desert. Society of Biblical LiteratureGoogle Scholar
  5. 5.
    Tov E (2008) Hebrew bible, Greek bible and Qumran: collected essays. Mohr SiebeckGoogle Scholar
  6. 6.
    Magness J (2000). In: Schiffman LH, VanderKam JC (eds) Encyclopedia of the Dead Sea scrolls. Oxford University Press, p 237Google Scholar
  7. 7.
    de Vaux R (1973) Archaeology and the Dead Sea scrolls. published for the British Academy by the Oxford University PressGoogle Scholar
  8. 8.
    Bentor YK (1961) Some geochemical aspects of the Dead Sea and the question of its age. Geochim Cosmochim Acta 25(4):239–240CrossRefGoogle Scholar
  9. 9.
    Nissenbaum A (1975) The microbiology and biogeochemistry of the Dead Sea. Microb Ecol 2(2):139–161. doi: 10.1007/bf02010435 CrossRefGoogle Scholar
  10. 10.
    Hahn O, Reiche I, Stege H (2006) Application in arts and archaeology. In: Beckhoff B, Kanngießer B, Langhoff N, Wedell R, Wolff H (eds) Handbook of practical X-ray fluorescence analysis. Springer, BerlinGoogle Scholar
  11. 11.
    Mantler M, Schreiner M (2000) X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom 29(1):3–17. doi: 10.1002/(sici)1097-4539(200001/02)29:1<3::aid-xrs398>3.0.co;2-o CrossRefGoogle Scholar
  12. 12.
    Wolff T, Mantouvalou I, Malzer W, Nissen J, Berger D, Zizak I, Sokaras D, Karydas A, Grlj N, Pelicon P, Schutz R, Zitnik M, Kanngießer B (2009) Performance of a polycapillary halflens as focussing and collecting optic-a comparison. J Anal At Spectrom 24(5):669–675CrossRefGoogle Scholar
  13. 13.
    Bronk H, Röhrs S, Bjeoumikhov A, Langhoff N, Schmalz J, Wedell R, Gorny H, Herold A, Waldschläger U (2001) ArtTAX-a new mobile spectrometer for energy-dispersive micro X-ray fluorescence spectrometry on art and archaeological objects. Fresen J Anal Chem 371(3):307–316CrossRefGoogle Scholar
  14. 14.
    Brooke G (2006) The historical documents at the John Rylands University library: the Reed Dead Sea scrolls collection. e-Pres Sci 3:30–40Google Scholar
  15. 15.
    Rabin I, Brooke G, Hodgson J, Pantos M, Prag J (2007) The Ronald Reed archive at the John Rylands University Library. e-Pres Sci 4:9–12Google Scholar
  16. 16.
    Tertian R (1973) A new approach to the study and control of interelement effects in the X-ray fluorescence analysis of metal alloys and other multi-component systems. X-Ray Spectrom 2(3):95–109. doi: 10.1002/xrs.1300020303 CrossRefGoogle Scholar
  17. 17.
    Mantouvalou I, Wolff T, Hahn O, Rabin I, Lühl L, Pagels M, Malzer W, Kanngießer B (2011) 3D micro-XRF for cultural heritage objects—new analysis strategies for the investigation of the Dead Sea Scrolls. Anal Chem (Washington, DC, U S). doi: 10.1021/ac2011262
  18. 18.
    Rabin I, Schütz R, Kindzorra E, Masic A, Schade U, Hahn O, Weinberg G, Lasch P (2010) Analysis of an antique alum tawed parchment,Analysis of an antique alum tawed parchment,. Paper presented at the ICOM-CC Joint Interim Meeting, RomeGoogle Scholar
  19. 19.
    Avîgad N, Yadin Y (1956) A Genesis Apocryphon: a scroll from the wilderness of Judaea. Magnes Press of the Hebrew UniversityGoogle Scholar
  20. 20.
    Wallert A (1996) Deliquescence and recrystallization of salts in the Dead Sea scrolls paper presented at the archaeological conservation and its consequences, CopenhagenGoogle Scholar
  21. 21.
    Trever JC (1977) The Dead Sea scrolls: a personal account. Eerdmans, Grand RapidsGoogle Scholar
  22. 22.
    Cross FM (1961) The ancient library of Qumran and modern biblical studies. AnchorGoogle Scholar
  23. 23.
    Sherman J (1955) The theoretical derivation of fluorescent X-ray intensities from mixtures. Spectrochim Acta 7:283–306Google Scholar
  24. 24.
    Shiraiwa T, Fujino N (1966) Theoretical calculation of fluorescent X-ray intensities in fluorescent X-ray spectrochemical analysis. Jpn J Appl Phys 5(10):886–899CrossRefGoogle Scholar
  25. 25.
    Criss J, Birks L (1968) Calculation methods for fluorescent x-ray spectrometry. Empirical coefficients versus fundamental parameters. Anal Chem (Washington, DC, U S) 40(7):1080–1086CrossRefGoogle Scholar
  26. 26.
    Elam WT, Ravel BD, Sieber JR (2002) A new atomic database for X-ray spectroscopic calculations. Radiat Phys Chem 63(2):121–128CrossRefGoogle Scholar
  27. 27.
    Ebel H (1999) X-ray tube spectra. X-Ray Spectrom 28:255–266CrossRefGoogle Scholar
  28. 28.
    Wolff T, Malzer W, Mantouvalou I, Hahn O, Kanngießer B (2011) A new fundamental parameter based calibration procedure for micro X-ray fluorescence spectrometers. Spectrochim Acta B Atom Spectros 66(2):170–178. doi: 10.1016/j.sab.2011.01.009 CrossRefGoogle Scholar
  29. 29.
    Bamford SA, Jaksic M, Medunic Z, Wegrzynek D, Chinea-Cano E, Markowicz A (2004) Extending the quantitative analytical capabilities of the EDXRF technique for plant-based samples. X-Ray Spectrom 33(4):277–280. doi: 10.1002/xrs.721 CrossRefGoogle Scholar
  30. 30.
    Malzer W, Hahn O, Kanngiesser B (2004) A fingerprint model for inhomogeneous ink—paper layer systems measured with micro x ray fluorescence analysis. X-Ray Spectrom 33(4):229–233CrossRefGoogle Scholar
  31. 31.
    Padilla R, Espen PV, Torres PPG (2006) The suitability of XRF analysis for compositional classification of archaeological ceramic fabric: a comparison with a previous NAA study. Anal Chim Acta 558(1–2):283–289CrossRefGoogle Scholar
  32. 32.
    Balyuzi H (1975) Analytic approximation to incoherently scattered X-ray intensities. Acta Crystallogr A: Found Crystallogr 31(5):600–602. doi: 10.1107/S0567739475001295 CrossRefGoogle Scholar
  33. 33.
    Levin Z, Ganor E (1988) Measurements of aerosol size spectra and chemical composition in the Dead sea rift valley. In: Atmospheric Aerosols and Nucleation, vol 309. Lecture Notes in Physics. Springer Berlin, pp 229–232. doi: 10.1007/3-540-50108-8_1056
  34. 34.
    Shalev E, Yechieli Y, Bein A (2005) The hydrogeological system in the Nahal Parsa–Nahal Yeelim area: implications regarding the evaporation ponds and on the possibility of sinkholes forming nearby. GSI Reports. Geological Survey of Israel, JerusalemGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Timo Wolff
    • 1
    • 2
    Email author
  • Ira Rabin
    • 2
  • Ioanna Mantouvalou
    • 1
  • Birgit Kanngießer
    • 1
  • Wolfgang Malzer
    • 1
  • Emanuel Kindzorra
    • 2
  • Oliver Hahn
    • 2
  1. 1.Technical University of BerlinBerlinGermany
  2. 2.BAM Federal Institute for Materials Research and TestingBerlinGermany

Personalised recommendations