Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels

  • Yoana Nuevo-Ordóñez
  • M. Montes-BayónEmail author
  • E. Blanco-González
  • J. Paz-Aparicio
  • J. Diánez Raimundez
  • J. M. Tejerina
  • M. A. Peña
  • A. Sanz-MedelEmail author
Original Paper


Increased concentrations of circulating metal-degradation products derived from the use of Ti orthopaedic implants may have deleterious biological effects over the long term. Therefore, there is an increasing need to establish the basal level of Ti in the serum of the population (exposed and non-exposed) with appropriate highly sensitive techniques and strategies. With this aim, we have developed a quantitative strategy for the determination of total Ti concentration in human serum samples by isotope dilution analysis using a double-focussing inductively coupled plasma mass spectrometer. Minimizing sample handling and therefore contamination issues, we obtained detection limits of about 0.05 μg L−1 Ti working at medium resolution (m/Δm 4000). Such extremely good sensitivity permitted us to establish the range of Ti concentration in serum of 40 control individuals (mean 0.26 μg L−1) and also to compare it with the level in exposed patients with different Ti metal implants. On the other hand, Ti transport “in vivo” studies have been enabled by online coupling of liquid chromatography (anion-exchange) separation and double-focussing inductively coupled plasma mass spectrometry for sensitive detection of Ti. The development of a postcolumn isotope dilution strategy permitted quantitative characterization of the Ti-transporting biomolecules in human serum. The results for unspiked serum revealed that 99.8% of the Ti present in this fluid is bound to the protein transferrin, with column recoveries greater than 95%.


This work illustrates the quantitative evaluation of the Ti released to serum due to shedding of the Ti containing implants by the blood components and its association to different serum biomolecules.


Titanium Double-focussing inductively coupled plasma mass spectrometry Intramedullary nails Speciation 



The authors gratefully acknowledge the Regional Government of Asturias (FICYT) for financial support through the projects PC06-035 and PC10-27.


  1. 1.
    Nicholson JW (2002) The chemistry of medical and dental materials. RSC monographs. Royal Society of Chemistry, CambridgeGoogle Scholar
  2. 2.
    Lascombes P, Haumont T, Journeau P (2006) J Ped Orthop 26:827–834CrossRefGoogle Scholar
  3. 3.
    Jacobs JJ, Skipor AK, Urban RM, Galante JO (1991) J Bone Joint Surg (Am) 73:1475–1486Google Scholar
  4. 4.
    Wang JC, Yu WD, Sandhu HS, Betts F, Bhuta S, Delamarter RB (1999) Spine 24:899–903CrossRefGoogle Scholar
  5. 5.
    Hjalmarsson L, Smedberg JI, Wennerberg A (2011) J Oral Rehab 38:61–71CrossRefGoogle Scholar
  6. 6.
    Keegan GM, Learmonth ID, Case CP (2007) J Bone Joint Surg (Br) 89B:567–573Google Scholar
  7. 7.
    Brien WW, Salvati EA, Betts F, Bullough P, Wright T, Rimnac C, Buly R, Garvin K (1992) Clin Orthop 276:66–74Google Scholar
  8. 8.
    Jacobs JJ, Skipor AK, Campbell PA, Hallab NJ, Urban RM, Amstutz HC (2004) J Arthroplasty 19:S59–S65CrossRefGoogle Scholar
  9. 9.
    Dustan E, Sanghrajka AP, Tilley S, Unwin P, Blunn G, Cannon SR, Briggs TWR (2005) J Bone Joint Surg (Br) 87:628–631CrossRefGoogle Scholar
  10. 10.
    Chen J, Dong X, Zhao J, Tang G (2009) J App Toxicol 29:330–337CrossRefGoogle Scholar
  11. 11.
    Tinoco AD, Earnes EV, Valentine AM (2008) J Am Chem Soc 130:2262–2270CrossRefGoogle Scholar
  12. 12.
    Sarmiento-González A, Marchante-Gayón JM, Tejerina-Lobo JM, Paz Jiménez J, Sanz-Medel A (2008) Anal Bioanal Chem 391:2583–2589CrossRefGoogle Scholar
  13. 13.
    Richardson TD, Pineda SJ, Strenge KB, Van Fleet TA, McGregor M, Milbrandt JC, Espinosa JA, Freitag P (2008) Spine 33:792–796CrossRefGoogle Scholar
  14. 14.
    Tinoco AD, Valentine AM (2005) J Am Chem Soc 127:11218–11219CrossRefGoogle Scholar
  15. 15.
    Guo M, Sun H, McArdle HJ, Gambling L, Sadler PJ (2000) Biochemistry 39:10023–10033CrossRefGoogle Scholar
  16. 16.
    Sariego Muñiz C, Marchante Gayón JM, García Alonso JI, Sanz-Medel A (1999) J Anal At Spectrom 14:193–198CrossRefGoogle Scholar
  17. 17.
    Rottmann L, Heumann KG (1994) Fresenius J Anal Chem 350:221–227CrossRefGoogle Scholar
  18. 18.
    McGarry S, Morgan SJ, Grosskreuz RM, Williams AE, Smith WR (2008) J Trauma 64:430–433CrossRefGoogle Scholar
  19. 19.
    Patton MS, Lyon TDB, Ashcroft GP (2008) Acta Orthop 79:820–825CrossRefGoogle Scholar
  20. 20.
    Nuevo-Ordóñez Y, Montes-Bayón M, Blanco-González E, Paz-Jiménez J, Tejerina-Lobo JM, Pena-López M, Sanz-Medel A (2009) J Anal At Spectrom 24:1037–1043CrossRefGoogle Scholar
  21. 21.
    Sarmiento A, Marchante Gayon J, Ruiz Encinar J, Sanz-Medel A (2008) Anal Chem 80:8702–8711CrossRefGoogle Scholar
  22. 22.
    Del Castillo ME, Montes-Bayón M, Sanz-Medel A (2006) Anal Chem 82:8218–8226Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yoana Nuevo-Ordóñez
    • 1
  • M. Montes-Bayón
    • 1
    Email author
  • E. Blanco-González
    • 1
  • J. Paz-Aparicio
    • 2
  • J. Diánez Raimundez
    • 2
  • J. M. Tejerina
    • 3
  • M. A. Peña
    • 3
  • A. Sanz-Medel
    • 1
    Email author
  1. 1.Department of Physical and Analytical Chemistry, Faculty of ChemistryUniversity of OviedoOviedoSpain
  2. 2.Department of Surgery, Faculty of MedicineUniversity of OviedoOviedoSpain
  3. 3.Department of Stomatology, School of StomatologyUniversity of OviedoOviedoSpain

Personalised recommendations