Combined Raman and IR spectroscopic study on the radical-based modifications of methionine

  • A. TorreggianiEmail author
  • S. Barata-Vallejo
  • C. Chatgilialoglu
Original Paper


Among damages reported to occur on proteins, radical-based changes of methionine (Met) residues are one of the most important convalent post-translational modifications. The combined application of Raman and infrared (IR) spectroscopies for the characterisation of the radical-induced modifications of Met is described here. Gamma-irradiation was used to simulate the endogenous formation of reactive species such as hydrogen atoms (H), hydroxyl radicals (OH) and hydrogen peroxide (H2O2). These spectroscopic techniques coupled to mass experiments are suitable tools in detecting almost all the main radical-induced degradation products of Met that depend on the nature of the reactive species. In particular, Raman spectroscopy is useful in revealing the radical-induced modifications in the sulphur-containing moiety, whereas the IR spectra allow decarboxylation and deamination processes to be detected, as well as the formation of other degradation products. Thus, some band patterns useful for building a library of spectra–structure correlation for radical-based degradation of Met were identified. In particular, the bands due to the formation of methionine sulfoxide, the main oxidation product of Met, have been identified. All together, these results combine to produce a set of spectroscopic markers of the main processes occurring as a consequence of radical stress exposure, which can be used in a spectroscopic protocol for providing a first assessment of Met modifications in more complex systems such as peptides and proteins, and monitoring their impact on protein structure.


The combined use of Raman and IR spectroscopy allows to monitor the formation of the main degradation products of amino acids like methionine after radical stress exposure. In particular, Raman spectra are useful for revealing the occurrence of modifications in sulphur-containing moiety, whereas IR spectroscopy is able to detect decarboxylation and deamination processes, as well as the formation of new products


Methionine Radical stress Raman spectroscopy IR spectroscopy Gamma-radiolysis 



α-Aminobutyric acid


Electron spray ionisation


Gas chromatography/mass spectrometry








Methionine sulfoxide







The support and sponsorship concerned by CNR-CONICET joint research project 2009–2010 and COST Action CM0603 on “Free Radicals in Chemical Biology (CHEMBIORADICAL)” are kindly acknowledged.

Supplementary material

216_2011_5203_MOESM1_ESM.pdf (52 kb)
ESM 1 (PDF 51 kb)


  1. 1.
    Vogt W (1995) Free Rad Biol Med 18:93–105CrossRefGoogle Scholar
  2. 2.
    Stadtman ER, Moskovitz J, Levine RL (2003) Antiox Redox Signal 5:577–582CrossRefGoogle Scholar
  3. 3.
    Koteliansky VE, Domogatsky SP, Gudkov AT (1978) Eur J Biochem 90:319–323CrossRefGoogle Scholar
  4. 4.
    Brot N, Weissbach H (1983) Arch Biochem Biophys 223:271–281CrossRefGoogle Scholar
  5. 5.
    Johnson D, Travis J (1979) J BiolChem 254:4022–4026Google Scholar
  6. 6.
    Wang WR, Vlasak J, Li YS, Pristatsky P, Fang YL, Pittman T, Roman J, Wang Y, Prueksaritanont T, Ionescu R (2011) Mol Immunol 48:860–866CrossRefGoogle Scholar
  7. 7.
    Snijder J, Rose RJ, Raijmakers R, Heck AJR (2010) J Struct Biol 174:187–195CrossRefGoogle Scholar
  8. 8.
    Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) PNAS 93:15036–15040CrossRefGoogle Scholar
  9. 9.
    Reddy VY, Desrochers PE, Pizzo SV, Gonias SL, Sahakian JA, Levine RL, Weiss SJ (1994) J Biol Chem 269:4683–4691Google Scholar
  10. 10.
    Davies MJ (2005) Biochim Biophys Acta-Proteins and Proteomics 1703:93–109CrossRefGoogle Scholar
  11. 11.
    Hawkins CL, Davies MJ (2001) Biochim Biophys Acta-Bioenerg 1504:196–219CrossRefGoogle Scholar
  12. 12.
    Davies MJ, Fu SL, Wang HJ, Dean RT (1999) Free Rad Biol Med 27:1151–1163CrossRefGoogle Scholar
  13. 13.
    Schoneich C (2005) Biochim Biophys Acta -Protein Proteomics 1703:111–119CrossRefGoogle Scholar
  14. 14.
    Barata-Vallejo S, Ferreri C, Postigo A, Chatgilialoglu C (2010) Res Toxicol 23:258–263CrossRefGoogle Scholar
  15. 15.
    Hawkins CL, Morgan PE, Davies MJ (2009) Free Rad Biol Med 46:965–988CrossRefGoogle Scholar
  16. 16.
    Salzano AM, Renzone G, Scaloni A, Torreggiani A, Ferreri C, Chatgilialoglu C (2011) Mol Biosyst 7:889–898CrossRefGoogle Scholar
  17. 17.
    Ferreri C, Chatgilialoglu C, Torreggiani A, Salzamo AM, Renzone G, Scaloni A (2008) J Proteome Res 7:2007–2015CrossRefGoogle Scholar
  18. 18.
    Chatgilialoglu C, Ferreri C, Torreggiani A, Salzano AM, Renzone G, Scaloni A (2011) J Proteomics. doi: 10.1016/j.jprot.2011.03.012
  19. 19.
    Spinks JWT, Woods RJ (1990) An introduction to radiation chemistry, 3rd edn. Wiley, New York, p 100Google Scholar
  20. 20.
    Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513–886Google Scholar
  21. 21.
    Ross ABMW, Helman WP, Buxton GV, Huie RE, Neta P (eds) (1998) NDRL-NIST solution kinetic database-version 3. Notre Dame Radiation Laboratory, Notre DameGoogle Scholar
  22. 22.
    Garrison WM (1987) Chem Rev 87:381–398CrossRefGoogle Scholar
  23. 23.
    Winterbourn CC (1995) Toxicol Lett 82–3:969–974CrossRefGoogle Scholar
  24. 24.
    Steinberg D, Witztum JL (2002) Circulation 106:E195CrossRefGoogle Scholar
  25. 25.
    Piraud M, Vianey-Saban C, Petritis K, Elfakir C, Steghens JP, Morla A, Bouchu D (2003) Rapid Commun Mass Spectrom 17:1297–1311CrossRefGoogle Scholar
  26. 26.
    Ravi J, Hills AE, Cerasoli E, Rakowska PD, Ryadnov MG (2011) Eur Biophys J 40:339–345CrossRefGoogle Scholar
  27. 27.
    Lord RC, Yu N-t (1970) J Mol Biol 50:509–524CrossRefGoogle Scholar
  28. 28.
    Mary MB, Umadevi M, Pandiarajan S, Ramakrishnan V (2004) Spectrochim Acta Part a-Mol Biomol Spectrosc 60:2643–2651CrossRefGoogle Scholar
  29. 29.
    Lima JA, Freire PTC, Melo FEA, Lemos V, Mendes J, Pizani PS (2008) J Raman Spectrosc 39:1356–1363CrossRefGoogle Scholar
  30. 30.
    Torreggiani A, Tamba M, Ferreri C (2007) Prot Pept Letters 14:716–722CrossRefGoogle Scholar
  31. 31.
    Torreggiani A, Tamba M, Manco I, Faraone-Mennella MR, Ferreri C, Chatgilialoglu C (2006) Biopolymers 81:39–50CrossRefGoogle Scholar
  32. 32.
    Torreggiani A, Domenech J, Orihuela R, Ferreri C, Atrian S, Capdevila M, Chatgilialoglu C (2009) Chem Eur J 15:6015–6024CrossRefGoogle Scholar
  33. 33.
    Ferreri C, Manco I, Faraone-Mennella MR, Torreggiani A, Tamba M, Manara S, Chatgilialoglu C (2006) ChemBioChem 7:1738–1744CrossRefGoogle Scholar
  34. 34.
    Jurasekova Z, Tinti A, Torreggiani A (2011) Anal Bioanal Chem 400:2921–2931CrossRefGoogle Scholar
  35. 35.
    Rajkumar BJM, Ramakrishnan V (2001) Spectrochim. Acta, Part A, Mol Biomol Spectrosc 57(2):247–254CrossRefGoogle Scholar
  36. 36.
    Koleva BB (2007) Vibr Spectrosc 44:30–35CrossRefGoogle Scholar
  37. 37.
    Grunenberg A, Bougeard D (1987) J Mol Struct 160:27–36CrossRefGoogle Scholar
  38. 38.
    Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and raman spectroscopy. Academic, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. Torreggiani
    • 1
    Email author
  • S. Barata-Vallejo
    • 1
    • 2
  • C. Chatgilialoglu
    • 1
  1. 1.I.S.O.F., Consiglio Nazionale delle RicercheBolognaItaly
  2. 2.Faculty of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations