Analytical and Bioanalytical Chemistry

, Volume 401, Issue 4, pp 1183–1193 | Cite as

Quantification of the six major α-dicarbonyl contaminants in peritoneal dialysis fluids by UHPLC/DAD/MSMS

  • Stefan Mittelmaier
  • Michael Fünfrocken
  • Dominik Fenn
  • Robert Berlich
  • Monika Pischetsrieder
Original Paper

Abstract

During heat sterilization of peritoneal dialysis solutions, glucose is partially transformed into glucose degradation products (GDPs), which significantly reduce the biocompatibility of these medicinal products. Targeted α-dicarbonyl screening identified glyoxal, methylglyoxal, 3-deoxyglucosone, 3,4-dideooxyglucosone-3-ene, glucosone, and 3-deoxygalactosone as the major six GDPs with α-dicarbonyl structure. In the present study, an ultra-high-performance liquid chromatography method was developed which allows the separation of all relevant α-dicarbonyl GDPs within a run time of 15 min after derivatization with o-phenylenediamine. Hyphenated diode array detection/tandem mass spectrometry detection provides very robust quantification and, at the same time, unequivocal peak confirmation. Systematic evaluation of the derivatization process resulted in an optimal derivatization period that provided maximal derivatization yield, minimal de novo formation (uncertainty range ±5%), and maximal sample throughput. The limit of detection of the method ranged from 0.13 to 0.19 μM and the limit of quantification from 0.40 to 0.57 μM. Relative standard deviations were below 5%, and recovery rates ranged between 91% and 154%, dependent on the type and concentration of the analyte (in 87 out of 90 samples, recovery rates were 100 ± 15%). The method was then applied for the analysis of commercial peritoneal dialysis fluids (nine different product types, samples from three lots of each).

Figure

A novel UHPLC/DAD/MSMS method allows the quantification of the six major α-dicarbonyl contaminants in peritoneal dialysis fluids

Keywords

Glucose degradation products Peritoneal dialysis fluids UHPLC α-Dicarbonyl compounds Tandem mass spectrometry 3,4-DGE 

References

  1. 1.
    Sharma A, Blake PG (2007) Peritoneal dialysis. In: Brenner BM (ed) Brenner and Rector’s the kidney. Elsevier Saunders, Philadelphia, pp 2007–2037Google Scholar
  2. 2.
    Ledebo I, Wieslander A, Kjellstrand P (2000) Can we prevent the degradation of glucose in peritoneal dialysis solutions? Perit Dial Int 20(suppl 2):S48–S51Google Scholar
  3. 3.
    Frischmann M, Spitzer J, Fünfrocken M, Mittelmaier S, Deckert M, Fichert T, Pischetsrieder M (2009) Development and validation of an HPLC method to quantify 3,4-dideoxyglucosone-3-ene in peritoneal dialysis fluids. Biomed Chromatogr 23(8):843–851CrossRefGoogle Scholar
  4. 4.
    Tauer A, Knerr T, Niwa T, Schaub TP, Lage C, Passlick-Deetjen J, Pischetsrieder M (2001) In vitro formation of N[epsilon]-(carboxymethyl)lysine and imidazolones under conditions similar to continuous ambulatory peritoneal dialysis. Biochem Biophys Res Comm 280(5):1408–1414CrossRefGoogle Scholar
  5. 5.
    Mahiout A, Ehlerding G, Brunkhorst R (1996) Advanced glycation end-products in the peritoneal fluid and in the peritoneal membrane of continuous ambulant peritoneal dialysis patients. Nephrol Dial Transplant 11(suppl 5):2–6Google Scholar
  6. 6.
    Honda K, Nitta K, Horita S, Yumura W, Nihei H, Nagai R, Ikeda K, Horiuchi S (1999) Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. Nephrol Dial Transplant 14(6):1541–1549CrossRefGoogle Scholar
  7. 7.
    Vriese AS (2005) The John F. Maher recipient lecture 2004: rage in the peritoneum. Perit Dial Int 25(1):8–11Google Scholar
  8. 8.
    Witowski J, Korybalska K, Wisniewska J, Breborowicz A, Gahl GM, Frei U, Passlick-Deetjen J, Jorres A (2000) Effect of glucose degradation products on human peritoneal mesothelial cell function. J Am Soc Nephrol 11(4):729–739Google Scholar
  9. 9.
    Morgan LW, Wieslander A, Davies M, Horiuchi T, Ohta Y, Beavis MJ, Craig KJ, Williams JD, Topley N (2003) Glucose degradation products (GDP) retard remesothelialization independently of D-glucose concentration. Kidney Int 64(5):1854–1866CrossRefGoogle Scholar
  10. 10.
    Lee D-H, Choi S-Y, Ryu H-M, Kim C-D, Park S-H, Chung H-Y, Kim I-S, Kim Y-L (2009) 3,4-Dideoxyglucosone-3-ene induces apoptosis in human peritoneal mesothelial cells. Perit Dial Int 29(1):44–51Google Scholar
  11. 11.
    Tomo T, Okabe E, Yamamoto T, Namoto S, Iwashita T, Matsuyama K, Kadota J, Nasu M (2005) Synergistic cytotoxicity of acidity and 3,4-dideoxyglucosone-3-ene under the existence of lactate in peritoneal dialysis fluid. Ther Apher Dial 9(2):182–187CrossRefGoogle Scholar
  12. 12.
    Rippe B, Simonsen O, Heimbürger O, Christensson A, Haraldsson B, Stelin G, Weiss L, Nielsen F-D, Bro S, Friedberg M, Wieslander A (2001) Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int 59(1):348–357CrossRefGoogle Scholar
  13. 13.
    Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Lage C, Passlick-Deetjen J (2004) The Euro-balance trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int 66(1):408–418CrossRefGoogle Scholar
  14. 14.
    Lee HY, Park HC, Seo BJ, Do JY, Yun SR, Song HY, Kim YH, Kim YL, Kim DJ, Kim YS, Ahn C, Kim MJ, Shin SK (2005) Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (balance). Perit Dial Int 25(3):248–255Google Scholar
  15. 15.
    Mortier S, Faict D, Lameire NH, Vriese AS (2005) Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int 67(4):1559–1565CrossRefGoogle Scholar
  16. 16.
    Mittelmaier S, Fünfrocken M, Fenn D, Fichert T, Pischetsrieder M (2010) Identification and quantification of the glucose degradation product glucosone in peritoneal dialysis fluids by HPLC/DAD/MSMS. J Chromatogr B Analyt Technol Biomed Life Sci 878(11–12):877–882Google Scholar
  17. 17.
    Mittelmaier S, Fünfrocken M, Fenn D, Pischetsrieder M (2011) 3-Deoxygalactosone, a new glucose degradation product in peritoneal dialysis fluids: identification, quantification by HPLC/DAD/MSMS and its pathway of formation. Anal Bioanal Chem 399(4):1689–1697CrossRefGoogle Scholar
  18. 18.
    Nilsson-Thorell CB, Muscalu N, Andren AH, Kjellstrand PT, Wieslander AP (1993) Heat sterilization of fluids for peritoneal dialysis gives rise to aldehydes. Perit Dial Int 13(3):208–213Google Scholar
  19. 19.
    Linden T, Forsback G, Deppisch R, Henle T, Wieslander A (1998) 3-Deoxyglucosone, a promoter of advanced glycation end products in fluids for peritoneal dialysis. Perit Dial Int 18(3):290–293Google Scholar
  20. 20.
    Linden T, Cohen A, Deppisch R, Kjellstrand P, Wieslander A (2002) 3,4-Dideoxyglucosone-3-ene (3,4-DGE): a cytotoxic glucose degradation product in fluids for peritoneal dialysis. Kidney Int 62(2):697–703CrossRefGoogle Scholar
  21. 21.
    Glomb MA, Tschirnich R (2001) Detection of α-dicarbonyl compounds in Maillard reaction systems and in vivo. J Agric Food Chem 49(11):5543–5550CrossRefGoogle Scholar
  22. 22.
    Anet EFLJ (1961) Degradation of carbohydrates. II. Action of acid and alkali on 3-deoxyhexosones. Aust J Chem 14:295–301CrossRefGoogle Scholar
  23. 23.
    Erixon M, Wieslander A, Linden T, Carlsson O, Forsback G, Svensson E, Jonsson JA, Kjellstrand P (2006) How to avoid glucose degradation products in peritoneal dialysis fluids. Perit Dial Int 26(4):490–497Google Scholar
  24. 24.
    Erixon M, Linden T, Kjellstrand P, Carlsson O, Ernebrant M, Forsback G, Wieslander A, Jonsson JA (2004) PD fluids contain high concentrations of cytotoxic GDPs directly after sterilization. Perit Dial Int 24(4):392–398Google Scholar
  25. 25.
    Kjellstrand P, Erixon M, Wieslander A, Linden T, Martinson E (2004) Temperature: the single most important factor for degradation of glucose fluids during storage. Perit Dial Int 24(4):385–391Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stefan Mittelmaier
    • 1
  • Michael Fünfrocken
    • 2
  • Dominik Fenn
    • 2
  • Robert Berlich
    • 2
  • Monika Pischetsrieder
    • 1
  1. 1.Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer CenterUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Fresenius Medical Care Deutschland GmbHSt. WendelGermany

Personalised recommendations