Analytical and Bioanalytical Chemistry

, Volume 401, Issue 4, pp 1365–1375 | Cite as

Identification and characterization of impurities of tetracosactide by capillary electrophoresis and liquid chromatography coupled to time-of-flight mass spectrometry

  • Angelina Taichrib
  • Gerhard K. E. Scriba
  • Christian Neusüß
Original Paper


Tetracosactide is a synthetic peptide analogue of the human adrenocorticotropic hormone that stimulates the production of cortisol in the adrenal cortex. The medical use of the compound is primarily the diagnosis of the adrenal cortex function. In order to characterize impurities of the drug, tetracosactide samples were analysed by both liquid chromatography and capillary electrophoresis coupled to a quadrupole time-of-flight mass spectrometer. The identification of the impurities was carried out based on accurate mass determination and fragment ion spectra. The presence of several peptides of lower and higher masses than tetracosactide could be shown, including N- and C-terminally truncated peptides as well as peptides which still contained protecting groups or additional amino acids. Furthermore, a semi-quantitative estimation of the relative amounts of the impurities in different samples as well as a commercial preparation revealed that the number and the type of the impurities varied between the samples. Comparing the selectivity of liquid chromatography and capillary electrophoresis regarding the separation of tetracosactide impurities, it can be stated that capillary electrophoresis showed a higher suitability for the separation of tetracosactide fragments (smaller peptides) while the larger peptides, i.e. those wearing protecting groups, were separated more efficiently by liquid chromatography.


Tetracosactide Impurity identification LC/MS CE/MS 



The Federal Institute for Drugs and Medical Devices (BfArM, Bonn, Germany) is gratefully acknowledged for providing the samples of TCS and its impurities. AT thanks the Thomas Gessmann Foundation for financial support.

Supplementary material

216_2011_5183_MOESM1_ESM.pdf (1.1 mb)
Table S1 (PDF 1.10 mb)


  1. 1.
    Schwyzer R, Kappeler H (1963) Synthese eines Tetracosapeptides mit hoher corticotroper Wirksamkeit: β1–24-Corticotropin. Helvetica Chimica Acta 46(5):1550–1572CrossRefGoogle Scholar
  2. 2.
    Toft A, Irvine W (1974) Hormonal Effects of Synthetic ACTH Analogues. Proc R Soc Med 67:749–750Google Scholar
  3. 3.
    Vogeser M, Zachoval R, Jacob K (2001) Serum cortisol/cortisone ratio after Synacthen stimulation. Clin Biochem 34(5):421–425CrossRefGoogle Scholar
  4. 4.
    Bridges NA, Hindmarsh PC, Pringle PJ, Honour JW, Brook CGD (1998) Cortisol, Androstenedione (A4), Dehydroepiandrosterone Sulphate (DHEAS) and 17 Hydroxyprogesterone (17OHP) Responses to Low Doses of (1–24)ACTH. J Clin Endocrinol Metab 83(10):3750–3753CrossRefGoogle Scholar
  5. 5.
    Otto H, Minneker C, Spaethe R (1966) Synacthen-Kurztest zur Beurteilung der Nebennierenrindenfunktion (Intravenous injection of corticotropin β1—24 in the rapid diagnosis of adrenal cortical function). Dtsch Med Wochenschr 91(20):934–939CrossRefGoogle Scholar
  6. 6.
    Crowley S, Hindmarsh PC, Holownia P, Honour JW, Brook CGD (1991) The use of low doses of ACTH in the investigation of adrenal function in man. J Endocrinol 130(3):475–479CrossRefGoogle Scholar
  7. 7.
    Agwu JC, Spoudeas H, Hindmarsh PC, Pringle PJ, Brook CGD (1999) Tests of adrenal insufficiency. Arch Dis Child 80(4):330–333CrossRefGoogle Scholar
  8. 8.
    Alía P, Villabona C, Giménez O, Sospedra E, Soler J, Navarro MA (2006) Profile, mean residence time of ACTH and cortisol responses after low and standard ACTH tests in healthy volunteers. Clin Endocrinol 65(3):346–351CrossRefGoogle Scholar
  9. 9.
    Collomp K, Arlettaz A, Portier H, Lecoq A-M, Le Panse B, Rieth N, De Ceaurriz J (2008) Short-term glucocorticoid intake combined with intense training on performance and hormonal responses. Br J Sports Med 42(12):983–988CrossRefGoogle Scholar
  10. 10.
    Soetens E, Hueting J, Meirleir K (1995) No influence of ACTH on maximal performance. Psychopharmacology 118(3):260–266CrossRefGoogle Scholar
  11. 11.
    Baume N, Steel G, Edwards T, Thorstensen E, Miller B (2008) No variation of physical performance and perceived exertion after adrenal gland stimulation by synthetic ACTH (Synacthen®) in cyclists. Eur J Appl Physiol 104(4):589–600CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Jeffcoate WJ, Phenekos C, Ratcliffe JG, Williams S, Rees L, Besser GM (1977) Comparison of the pharmacokinetics in man of two synthetic ACTH analogues: a1–24 and substituted β1–18 ACTH. Clin Endocrinol 7(1):1–11CrossRefGoogle Scholar
  14. 14.
    Thevis M, Bredehöft M, Geyer H, Kamber M, Delahaut P, Schänzer W (2006) Determination of Synacthen in human plasma using immunoaffinity purification and liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 20(23):3551–3556CrossRefGoogle Scholar
  15. 15.
    Thomas A, Kohler M, Schänzer W, Kamber M, Delahaut P, Thevis M (2009) Determination of Synacthen in urine for sports drug testing by means of nano-ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 23(17):2669–2674CrossRefGoogle Scholar
  16. 16.
    Chaabo A, de Ceaurriz J, Buisson C, Tabet J-C, Lasne F (2011) Simultaneous quantification and qualification of synacthen in plasma. Anal Bioanal Chem 399(5):1835–1843CrossRefGoogle Scholar
  17. 17.
    Tetracosactide (2011) In: European Pharmacopoeia. 7th edn. European Directorate of The Quality of Medicines, Strasbourg, p monograph 0644Google Scholar
  18. 18.
  19. 19.
    Kasicka V (2010) Recent advances in CE and CEC of peptides (2007–2009). Electrophoresis 31(1):122–146CrossRefGoogle Scholar
  20. 20.
    Kates SA, Albericio F (eds) (2000) Solid-Phase Synthesis: A Practical Guide. Marcel Dekker, Inc., New YorkGoogle Scholar
  21. 21.
    Chan WC, White PD (eds) (2000) Fmoc Solid Phase Peptide Synthesis - A Practical Approach. Oxford University Press, OxfordGoogle Scholar
  22. 22.
    Merrifield RB (1963) Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J Am Chem Soc 85(14):2149–2154CrossRefGoogle Scholar
  23. 23.
    Cifuentes A, Poppe H (1997) Behavior of peptides in capillary electrophoresis: Effect of peptide charge, mass and structure. Electrophoresis 18(12–13):2362–2376CrossRefGoogle Scholar
  24. 24.
    Adamson NJ, Reynolds EC (1997) Rules relating electrophoretic mobility, charge and molecular size of peptides and proteins. J Chromatogr B Biomed Sci Appl 699(1–2):133–147CrossRefGoogle Scholar
  25. 25.
    Sanz-Nebot V, Benavente F, Toro I, Barbosa J (2003) Evaluation of chromatographic versus electrophoretic behaviour of a series of therapeutical peptide hormones. J Chromatogr A 985(1–2):411–423CrossRefGoogle Scholar
  26. 26.
    Winzor DJ (2003) Classical approach to interpretation of the charge-dependence of peptide mobilities obtained by capillary zone electrophoresis. J Chromatogr A 1015(1–2):199–204CrossRefGoogle Scholar
  27. 27.
    Tessier B, Blanchard F, Vanderesse R, Harscoat C, Marc I (2004) Applicability of predictive models to the peptide mobility analysis by capillary electrophoresis-electrospray mass spectrometry. J Chromatogr A 1024(1–2):255–266CrossRefGoogle Scholar
  28. 28.
    Jalali-Heravi M, Shen Y, Hassanisadi M, Khaledi MG (2005) Prediction of electrophoretic mobilities of peptides in capillary zone electrophoresis by quantitative structure-mobility relationships using the offord model and artificial neural networks. Electrophoresis 26(10):1874–1885CrossRefGoogle Scholar
  29. 29.
    Meek JL (1980) Prediction of peptide retention times in high-pressure liquid chromatography on the basis of amino acid composition. Proc Natl Acad Sci USA 77(3):1632–1636CrossRefGoogle Scholar
  30. 30.
    Guo D, Mant CT, Taneja AK, Parker JMR, Rodges RS (1986) Prediction of peptide retention times in reversed-phase high-performance liquid chromatography I. Determination of retention coefficients of amino acid residues of model synthetic peptides. J Chromatogr A 359:499–518CrossRefGoogle Scholar
  31. 31.
    Mant CT, Burke TWL, Black JA, Hodges RS (1988) Effect of peptide chain length on peptide retention behaviour in reversed-phase chromatogrphy. J Chromatogr A 458:193–205CrossRefGoogle Scholar
  32. 32.
    Petritis K, Kangas LJ, Yan B, Monroe ME, Strittmatter EF, Qian W-J, Adkins JN, Moore RJ, Xu Y, Lipton MS, Camp DG, Smith RD (2006) Improved Peptide Elution Time Prediction for Reversed-Phase Liquid Chromatography-MS by Incorporating Peptide Sequence Information. Anal Chem 78(14):5026–5039CrossRefGoogle Scholar
  33. 33.
    Spicer V, Grigoryan M, Gotfrid A, Standing KG, Krokhin OV (2010) Predicting Retention Time Shifts Associated with Variation of the Gradient Slope in Peptide RP-HPLC. Anal Chem 82(23):9678–9685CrossRefGoogle Scholar
  34. 34.
    Tang XJ, Thibault P, Boyd RK (1993) Fragmentation reactions of multiply-protonated peptides and implications for sequencing by tandem mass spectrometry with low-energy collision-induced dissociation. Anal Chem 65(20):2824–2834CrossRefGoogle Scholar
  35. 35.
    Roepstorff P, Fohlman J (1984) Letter to the editors: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biol Mass Spectrom 11(11):601–601CrossRefGoogle Scholar
  36. 36.
    Sanz-Nebot V, Toro I, Castillo A, Barbosa J (2001) Investigation of synthetic peptide hormones by liquid chromatography coupled to pneumatically assisted electrospray ionization mass spectrometry: analysis of a synthesis crude of peptide triptorelin. Rapid Commun Mass Spectrom 15(13):1031–1039CrossRefGoogle Scholar
  37. 37.
    Sanz-Nebot V, Toro I, Garcés A, Barbosa J (1999) Separation and identification of peptide mixtures in a synthesis crude of carbetocin by liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 13(23):2341–2347CrossRefGoogle Scholar
  38. 38.
    Sanz-Nebot V, Benavente F, Barbosa J (2000) Separation and characterization of multicomponent peptide mixtures by liquid chromatography-electrospray ionization mass spectrometry: Application to crude products of the synthesis of leuprolide. J Chromatogr A 870(1–2):315–334CrossRefGoogle Scholar
  39. 39.
    Sanz-Nebot V, Benavente F, Toro I, Barbosa J (2004) Separation and characterization of complex crude mixtures produced in the synthesis of therapeutic peptide hormones by liquid chromatography coupled to electrospray mass spectrometry (LC-ES-MS). Anal Chim Acta 521(1):25–36CrossRefGoogle Scholar
  40. 40.
    Litowski JR, Semchuk PD, Mant CT, Hodges RS (1999) Hydrophilic interaction/cation-exchange chromatography for the purification of synthetic peptides from closely related impurities: serine side-chain acetylated peptides. J Pept Res 54(1):1–11CrossRefGoogle Scholar
  41. 41.
    Bayer E (1991) Auf dem Weg zur chemischen Synthese von Proteinen. Angewandte Chemie 103(2):117–133CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Angelina Taichrib
    • 1
  • Gerhard K. E. Scriba
    • 2
  • Christian Neusüß
    • 1
  1. 1.Chemistry DepartmentAalen UniversityAalenGermany
  2. 2.Department of Pharmaceutical ChemistryFriedrich Schiller University JenaJenaGermany

Personalised recommendations