Advertisement

Synthesis of molecularly imprinted polymers via ring-opening metathesis polymerization for solid-phase extraction of bisphenol A

  • Xiaohong Wang
  • Lirong Chen
  • Xiaojie XuEmail author
  • Yuanzong Li
Original Paper

Abstract

The use of molecularly imprinted polymers (MIPs) prepared by ring-opening metathesis polymerization (ROMP) for bisphenol A (BPA) was reported in this article. The resulting MIPs have high imprinting and adsorption capacities, and can be used for separation and determination of BPA in environmental water samples. The successful application of ROMP in the molecular imprinting field is described here. For the first time, two cross-linkers (dicyclopentadiene and 2,5-norbornadiene) and two Grubbs catalysts (first and second generation) were investigated to compare their effects on the binding performance of MIPs. The ROMP technique is able to create the imprinted polymers within 1 h under mild conditions. Furthermore, it can provide MIPs with obvious imprinting effects towards the template, very fast template rebinding kinetics, high binding capacity and appreciable selectivity over structurally related compounds. The adsorption process for MIPs in this study can be completed within 45 min, which is much faster than that of bulk MIPs synthesized by traditional free-radical polymerization. The resulting imprinting polymer was evaluated for its use as a sorbent support in an off-line solid-phase extraction approach to recover BPA from diluted aqueous samples. The optimized extraction protocol resulted in a reliable MISPE method suitable for selective extraction and preconcentration of BPA from tap water, human urine and liquid milk samples. This article demonstrates the practical feasibility of the MIPs prepared via ROMP as solid-phase extraction materials.

Figure

Synthesis of biaphenol A-imprinted polymer via Ringopening metathesis polymerization (ROMP)

Keywords

Molecular imprinted polymer Ring-opening metathesis polymerization Solid-phase extraction 

Notes

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grant No. 90717002, 30872109) and National 863 Program (No. 2006AA10Z447).

References

  1. 1.
    Haupt K (2003) Anal Chem 75:376A–383ACrossRefGoogle Scholar
  2. 2.
    Wulff G (2002) Chem Rev 102:1–128CrossRefGoogle Scholar
  3. 3.
    Ye L, Mosbach K (2008) Chem Mater 20:859–868CrossRefGoogle Scholar
  4. 4.
    Haupt K, Mosbach K (2000) Chem Rev 100:2495–2504CrossRefGoogle Scholar
  5. 5.
    Boonpangrak S, Whitcombe MJ, Prachayasittikul V, Mosbach K, Ye L (2006) Biosens Bioelectron 22:349–354CrossRefGoogle Scholar
  6. 6.
    Moad G, Rizzardo E, Thang SH (2008) Polymer 49:1079–1131CrossRefGoogle Scholar
  7. 7.
    Otsu T (2000) J Polym Sci Part A Polym Chem 38:2121–2136CrossRefGoogle Scholar
  8. 8.
    Zu B, Zhang Y, Guo X, Zhang H (2010) J Polym Sci Part A Polym Chem 48:532–541CrossRefGoogle Scholar
  9. 9.
    Piletska EV, Villoslada FN, Chianella IBA, Karim K, Whitcombe MJ, Piletsky SA, Doucette GJ, Ramsdell JS (2008) Anal Chim Acta 610:35–43CrossRefGoogle Scholar
  10. 10.
    Zhou D, Teng H, Koike KKY, Okamoto Y (2008) J Polym Sci Part A Polym Chem 46:4748–4755CrossRefGoogle Scholar
  11. 11.
    Bielawskia CW, Grubbs RH (2007) Prog Polym Sci 32:1–29CrossRefGoogle Scholar
  12. 12.
    Choi TL, Grubbs RH (2003) Angew Chem Int Ed 42:1743–1746CrossRefGoogle Scholar
  13. 13.
    Piotti ME (1999) Curr Opin Solid State Mater Sci 4:539–547CrossRefGoogle Scholar
  14. 14.
    Perrott MG, Novak BM (1995) Macromolecules 28:3492–3496CrossRefGoogle Scholar
  15. 15.
    Singh R, Czekelius C, Schrock RR (2006) Macromolecules 39:1316–1323CrossRefGoogle Scholar
  16. 16.
    Buchmeiser MR (2004) J Chromatogr A 1060:43–60CrossRefGoogle Scholar
  17. 17.
    Lubbad S, Buchmeiser MR (2003) Macromol Rapid Commun 24:580–584CrossRefGoogle Scholar
  18. 18.
    Mayr B, Eder K, Buchmeiser MR, Huber CG (2002) Anal Chem 74:6080–6087CrossRefGoogle Scholar
  19. 19.
    Gatschelhofer C, Magnes C, Pieber TR, Buchmeiser MR, Sinner F (2005) M. J Chromatogr A 1090:81–89CrossRefGoogle Scholar
  20. 20.
    Sinner F, Buchmeiser MR (2000) Macromolecules 33:5777–5786CrossRefGoogle Scholar
  21. 21.
    Patel A, Fouace S, Steinke JHG (2003) Chem Commun 88–89Google Scholar
  22. 22.
    Patel A, Fouace S, Steinke JHG (2004) Anal Chim Acta 504:53–62CrossRefGoogle Scholar
  23. 23.
    Enholm EJ, Allais F, Martin RT, Mohamed R (2006) Macromolecules 39:7859–7862CrossRefGoogle Scholar
  24. 24.
    Bagheri H, Mohammadi A, Salemi A (2004) Anal Chim Acta 513:445–449CrossRefGoogle Scholar
  25. 25.
    Hamdaoui O, Naffrechoux E, Hazar J (2007) J Hazard Mater 147:381–394CrossRefGoogle Scholar
  26. 26.
    Abecassis M, Landau MV, Brenner A, Herskowitz M (2007) J Catal 247:201–213CrossRefGoogle Scholar
  27. 27.
    Gao JJ, Liu LH, Liu XR, Zhou HD, Huang SB, Wang ZJ (2008) Chemosphere 71:1181–1187CrossRefGoogle Scholar
  28. 28.
    Sinner F, Buchmeiser MR, Tessadri R, Mupa M, Wurst K, Bonn GK (1998) J Am Chem Soc 120:2790–2797CrossRefGoogle Scholar
  29. 29.
    Umpleby RJI, Baxter SC, Rampey AM, Rushton GT, Chen Y, Shimizu DJ (2004) Chromatogr B 804:141–149CrossRefGoogle Scholar
  30. 30.
    Weck M, Schwab P, Grubbs RH (1996) Macromolecules 29:1789–1793CrossRefGoogle Scholar
  31. 31.
    Grubbs RH (2006) Angew Chem Int Ed 45:3760–3765CrossRefGoogle Scholar
  32. 32.
    Trnka TM, Grubbs RH (2001) Acc Chem Res 34:18–29CrossRefGoogle Scholar
  33. 33.
    Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN (1995) J Am Chem Soc 117:7105–7111CrossRefGoogle Scholar
  34. 34.
    Yun J, Marinez ER, Grubbs RH (2004) Organometallics 23:4172–4173CrossRefGoogle Scholar
  35. 35.
    Love JA, Sanford MS, Day MW, Grubbs RH (2003) J Am Chem Soc 125:10103–10109CrossRefGoogle Scholar
  36. 36.
    Tranka TM, Morgan JP, Sanford MS, Wilhelm TE, Scholl M, Choi TL, Ding S, Day MW, Grubbs RH (2003) J Am Chem Soc 125:2546–2558CrossRefGoogle Scholar
  37. 37.
    Rajagopal R, Axel R, Helmuth M, Frieder WS, Katterle M (2007) Biosens Bioelectron 22:3318–3325CrossRefGoogle Scholar
  38. 38.
    Buchmeiser MR (2001) Macromol Rapid Commun 22:1081–1094CrossRefGoogle Scholar
  39. 39.
    Fisher A, Grubbs RH (1992) Makromol Chem Macromol Symp 63:271CrossRefGoogle Scholar
  40. 40.
    Davidson TA, Wagner KB (1998) J Mol Catal: A Chem 133:67CrossRefGoogle Scholar
  41. 41.
    Davidson TA, Wagner KB, Priddy DB (1996) Macromolecules 29:786CrossRefGoogle Scholar
  42. 42.
    Fang C, Li SJ (2007) Inorg Organomet Polym 17:623–629CrossRefGoogle Scholar
  43. 43.
    Wang Y, Zhang J, Zhu XX, Yu A (2007) Polymer 48:5565–5571CrossRefGoogle Scholar
  44. 44.
    Hong HS, Grubbs RH (2006) J Am Chem Soc 128:3508–3509CrossRefGoogle Scholar
  45. 45.
    Gallivan JP, Jordan JP, Grubbs RH (2005) Tetrahedron Lett 46:2577–2580CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Xiaohong Wang
    • 1
  • Lirong Chen
    • 1
  • Xiaojie Xu
    • 1
    Email author
  • Yuanzong Li
    • 1
  1. 1.College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations