Advertisement

Natural resins and balsams from an eighteenth-century pharmaceutical collection analysed by gas chromatography/mass spectrometry

  • Gundel SteigenbergerEmail author
  • Christoph HermEmail author
Original Paper

Abstract

Historical nomenclature has not always been unequivocally associated with the botanical origin of natural resins. The availability of natural resins has changed throughout the centuries and so have their trade names. Furthermore, adulterations and lack of knowledge have led to variations in the composition of the products traded under the same name. This investigation aims at a new understanding of the interrelation between the historical and modern terms for natural resins. Different Pinaceae and Pistacia resins, mastic, sandarac, copaiba balm and burgundy pitch from Vigani’s Cabinet, a 300-year-old pharmaceutical collection owned by Queens’ College, Cambridge (UK) were investigated. Related reference materials from modern collections were analysed together with natural resins derived from reliable botanical sources. The analytical method was gas chromatography/mass spectrometry (GC-MS) with and without derivatisation with trimethylsulfonium hydroxide. This technique provided detailed molecular compositions of the studied materials, which in turn led to particular data profiles of the materials. Marker molecules of Copaifera, Pinaceae, Cupressaceae and Pistacia resins were identified. By comparing the GC-MS data profiles to the reference samples, a clearer picture of the connection between nomenclature and botanical origin was obtained. With the aid of the marker molecules and data profiles, it was then possible to clarify the nomenclature of the aged resins sampled from Vigani’s Cabinet.

Figure

Four drawers from the Vigani Cabinet

Keywords

Diterpenoid Triterpenoid Resin Gas chromatography–mass spectrometry trimethylsulfonium hydroxide Eighteenth century Material collection Botanical source John Francis Vigani 

Notes

Acknowledgements

This investigation was funded by a stipend from the Stifterverband der Deutschen Wissenschaft and KulturInvest foundation. The authors are greatly indebted to The President and Fellows of Queens’ College, Cambridge, for allowing the samples to be taken from the Vigani’s Cabinet at Queen’s College and to Dr. Brian Callingham, of Queens’ College, Cambridge, for his help with the project and for taken the photographs. We are also very grateful to Annegret Fuhrmann for her assistance during the experimental work.

References

  1. 1.
    Wagner L (2007) Fine art materials in Vigani’s Cabinet, 1704, of Queens’ College, Cambridge, vol 4. Dissertation Academy of Fine Arts, DresdenGoogle Scholar
  2. 2.
    van der Werf I, van den Berg KJ, Schmitt S, Boon JJ (2000) Molecular characterisation of copaiba balsam as used in painting techniques and restoration procedure. Stud Conserv 45:1–18CrossRefGoogle Scholar
  3. 3.
    Plowden C (2003) Production ecology of copaiba (Copaifera ssp.) oleoresin in the Eastern Brazilian Amazon. Econ Bot 57:491–501CrossRefGoogle Scholar
  4. 4.
    Cascon V, Gilbert B (2000) Characterisation of the chemical composition of oleoresins of Copaifera guianensis Desf., Copaifera dukei Dwyer and Copaifera multijuga Hayne. Phytochemistry 55:773–778CrossRefGoogle Scholar
  5. 5.
    Braga WF, Rezende CK, Antunes OAC, Pinto AC (1998) Terpenoids from Copaifera cearensis. Phytochemistry 49:263–264CrossRefGoogle Scholar
  6. 6.
    Ferrari M, Pagnoni UM, Pelizzoni F (1971) Terpenpoids from Copaifera langsdorfii. Phytochemistry 10:905–907CrossRefGoogle Scholar
  7. 7.
    van den Berg KJ, Ossebar J, van Keulen H (2002) In: van Grieken R, Janssens K, van’t Dack L, Meersman G (eds) Art 2002: proceedings of the 7th international conference, University of Antwerp, Antwerp-Wilrijk, pp. 1–10Google Scholar
  8. 8.
    Scalarone D, Kazaari M, Chiantore O (2003) Aging behaviour and pyrolytic characterisation of diterpenic resins used as art materials: Manila copal and sandarac. J Anal Appl Pyrolysis 68(69):115–136CrossRefGoogle Scholar
  9. 9.
    Colombini MP, Modugno F (2009) Organic mass spectrometry in art and archaeology. Wiley, Chichester, pp 3–36CrossRefGoogle Scholar
  10. 10.
    Chiavari G, Montalbai S, Otero V (2008) Characterisation of varnishes used in violins by pyrolysis-gas chromatography/mass spectrometry. Rapid Comm Mass Spectrom 22:3711–3718CrossRefGoogle Scholar
  11. 11.
    Mills JS, White R (1999) The organic chemistry of museum objects. Butterworth, Oxford, pp 102–3Google Scholar
  12. 12.
    White R, Kirby J (2001) A survey of nineteenth- and early twentieth-century varnish compositions found on a selection of paintings in the National Gallery. National Gallery Technical Bulletin 22:64–84Google Scholar
  13. 13.
    Hegnauer R, Hegnauer M (2001) Chemotaxonomie der Pflanzen, vol 11b, 2. Birkhäuser, Basel, p 493Google Scholar
  14. 14.
    Koller J, Baumer U, Grosser D, Walch K (1997) In: Koller J, Walch K (eds) Baroque and Rococo Laquers. Lipp, München, pp 379–394Google Scholar
  15. 15.
    Mills JS, White R (1977) Natural resins of art and archaeology: their sources, chemistry, and identification. Stud Conserv 22:12–31CrossRefGoogle Scholar
  16. 16.
    Colombini MP, Modugno F, Giannarelli S, Fuoco R, Matteini M (2000) GC-MS characterisation of paint varnishes. Microchem J 67:385–396CrossRefGoogle Scholar
  17. 17.
    Assimopoulou AN, Papageorgiu VP (2005) GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part I. Pistacia lentiscus var. chia. Biomed Chrom 19:285–311CrossRefGoogle Scholar
  18. 18.
    Assimopoulou AN, Papageorgiu VP (2005) GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part II. Pistacia terebinthus var. chia. Biomed Chrom 19:586–605CrossRefGoogle Scholar
  19. 19.
    Scalarone D, Lazzari M, Chiantore O (2002) Ageing behaviour and analytical pyrolysis characterisation of diterpenic resins used as art materials: colophony and Venice turpentine. J Anal Appl Pyrolysis 64:345–361CrossRefGoogle Scholar
  20. 20.
    van den Berg KJ, Boon JJ, Pastorova I, Spetter LFM (2000) Mass spectrometric methology for the analysis of highly oxidised diterpenoid acid in Old Master paintings. J Mass Spectrom 35:512–533CrossRefGoogle Scholar
  21. 21.
    Mills JS, White R (1999) The organic chemistry of museum objects. Butterworth, Oxford, p 100Google Scholar
  22. 22.
    Hafizoglu H, Reunanen M (1994) Composition of oeloresins from bark and cones of Abies nordmanniana and Picea orientalis. Holzforschung 48:7–11CrossRefGoogle Scholar
  23. 23.
    Arrabal C, Cortijo M, de Fernandez SB, Garcìa-Vallejo MC, Cadahìa E (2005) Differentiation among five Spanish Pinus pinaster provenances based on its oleoresin terpenic composition. Biochem Syst Ecol 33:1007–1016CrossRefGoogle Scholar
  24. 24.
    Norin T (1972) Some aspects of the chemistry of the order Pinales. Phytochemistry 11:1231–1242CrossRefGoogle Scholar
  25. 25.
    Koller J, Baumer U, Grosser D, Walch K (1997) In: Koller J, Walch K (eds) Baroque and Rococo laquers. Lipp, München, pp 359–378Google Scholar
  26. 26.
    Pitthard V, Stone R, Stanek S, Griesser M, Kryza-Gersch C, Hanzer H (2010) Organic patinas on Renaissance and Baroque bronzes—interpretation of compositions of the original patination by using a set of simulated varnished bronze coupons. J Cult Heritage. doi: 10.1016/j.culher.2010.09.002
  27. 27.
    Koller J, Baumer U (2000) In: Kühlenthal M (ed) Japanese and European lacquerware. Lipp, Munich, pp 339–348Google Scholar
  28. 28.
    Hummel O (1998) Hummel/Scholl Atlas der Polymer- und Kunststoffanalyse, vol 2b/I. Carl Hanser Verlag, Munich, p 426Google Scholar
  29. 29.
    Dale S (1693) Pharmacologia seu Manuductio ad Materiam Medicam. Smith & Walford, London, pp 395–401Google Scholar
  30. 30.
    Lewis W (1761) An experimental history of the materia medica. Baldwin, London, p 324Google Scholar
  31. 31.
    Pomet P (1717) Der aufrichtige Materialist und Specerey-Händler. Gleditsch & Weidmann, Leipzig, p 143Google Scholar
  32. 32.
    Lemery N, Richtern CF (1721) Vollständiges Materialienlexikon. Johann Friedrich Baun, Leipzig, p 1174Google Scholar
  33. 33.
    von Linnè C (1753) Species Plantarum. Lars Salvius, Stockholm, p 1040Google Scholar
  34. 34.
    James R (1747) Pharmacopoeia Universalis. Hodges & Wood, London, p 429Google Scholar
  35. 35.
    Hill J (1751) A history of the materia medica. Longman et al., London, p 737Google Scholar
  36. 36.
    Vahl M (1791) Symbolae Botanicae. Möller et Filis, Haunia, p 96Google Scholar
  37. 37.
    Desfontaines R (1799) Flora Atlantica, vol 2. Desgranges, Paris, p 353Google Scholar
  38. 38.
    Krünitz J, Korth JWD (1824) Oekonomisch-technologische Encyklopädie, vol 136. Pauli, Berlin, p 74Google Scholar
  39. 39.
    Masters TM (1895) Tetraclinis. J Linn Soc London, Bot 30:14–15Google Scholar
  40. 40.
    Mills JS, White R (1999) The organic chemistry of museum objects. Butterworth, Oxford, p 95fGoogle Scholar
  41. 41.
    James R (1747) Pharmacopoeia Universalis. Hodges & Wood, London, p 402Google Scholar
  42. 42.
    Bauhin C (1623) Pinax theatri botanici. Oporinus, Basel, p 500Google Scholar
  43. 43.
    Manget JJ (1687) Pharmacopoeia Schrödero-Hoffmanniana. Philipp Andrea, Köln, p 64Google Scholar
  44. 44.
    Zwinger T (1724) Compendium Medicinae Universae. Thurnisios, Basel, p 499Google Scholar
  45. 45.
    James R (1747) Pharmacopoeia Universalis. Hodges & Wood, London, pp 452–453Google Scholar
  46. 46.
    Savary des Brûlons J, Savary P-L (1748) Dictionnare universel de commerce, vol 3. Estienne et Fils, Paris, pp 470(2)–472(2)Google Scholar
  47. 47.
    Pomet P (1717) Der aufrichtige Materialist und Specerey-Händler. Gleditsch & Weidmann, Leipzig, pp 419–433Google Scholar
  48. 48.
    Hill J (1751) A history of the materia medica. Longman et al., London, pp 705–711Google Scholar
  49. 49.
    van der Doelen GA, Boon JJ (2000) Artificial aging of varnish triterpenoids in solution. J Photochem Photobiol A 134:45CrossRefGoogle Scholar
  50. 50.
    Blanckaert S (1748) Lexikon medicum. Bierwirth, Magdeburg, p 660Google Scholar
  51. 51.
    Mappus M, Ehrmann JC (1742) Historia Plantarum Alsaticarum. Dulsecker, Amsterdam, pp 1–2Google Scholar
  52. 52.
    Lewis W (1761) An experimental history of the materia medica. Baldwin, London, p 551Google Scholar
  53. 53.
    Takeda H, Schuller WH, Lawrence RV (1968) The thermal isomerisation of Abietic acid. J Org Chem 33:1683–1684CrossRefGoogle Scholar
  54. 54.
    Enoki A (1976) Isomerisation and autooxidation of resin acids. Wood Res 59(60):49–57Google Scholar
  55. 55.
    Bambang W, Tachibana S, Tinambunan D (2006) Chemical composition of Indonesian Pinus merkusii turpentine oils, gum oleoresins and rosins from Sumatra and Java. Pak J Biol Sci 9:7–14CrossRefGoogle Scholar
  56. 56.
    Wang S (2007) Chemical composition characteristics of Pinus latteri Mason rosin and turpentine from the south of Cambodia. Chem Ind For Prod 5Google Scholar
  57. 57.
    Coppen JJW, Clifton GD James DJ, Robinson JM, Supriana N (1993) Variability on xylem resin composition amongst natural populations of indonesian Pinus merkusii. Phytochemistry 33:129–136CrossRefGoogle Scholar
  58. 58.
    Papajannopoulos AD, Song ZQ, Liang ZQ, Spanos JA (2001) GC-MS analyis of oleoresin of three Greek pine species. Holz Roh Werkst 59:443–446CrossRefGoogle Scholar
  59. 59.
    Arrabal C, Cortijo M, de Fernandez SB, Garcia-Vallejo MC, Cadahia E (2002) Pinus pinaster oleoresin in Plus trees. Holzforschung 56:261–266CrossRefGoogle Scholar
  60. 60.
    Lemery N, Richtern CF (1721) Vollständiges Materialienlexikon. Johann Friedrich Braun, Leipzig, p 888Google Scholar
  61. 61.
    James R (1747) Pharmacopoeia Universalis. Hodges & Wood, London, p 403Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Chemistry and Food Chemistry, Institute for BiochemistryTechnical University DresdenDresdenGermany
  2. 2.Laboratory of ArchaeometryAcademy of Fine Arts DresdenDresdenGermany

Personalised recommendations