Characterization of fresh and aged natural ingredients used in historical ointments by molecular spectroscopic techniques: IR, Raman and fluorescence

  • L. BrambillaEmail author
  • C. Riedo
  • C. Baraldi
  • A. Nevin
  • M. C. Gamberini
  • C. D’Andrea
  • O. Chiantore
  • S. Goidanich
  • L. Toniolo
Original Paper


Natural organic materials used to prepare pharmaceutical mixtures including ointments and balsams have been characterized by a combined non-destructive spectroscopic analytical approach. Three classes of materials which include vegetable oils (olive, almond and palm tree), gums (Arabic and Tragacanth) and beeswax are considered in this study according to their widespread use reported in ancient recipes. Micro-FTIR, micro-Raman and fluorescence spectroscopies have been applied to fresh and mildly thermally aged samples. Vibrational characterization of these organic compounds is reported together with tabulated frequencies, highlighting all spectral features and changes in spectra which occur following artificial aging. Synchronous fluorescence spectroscopy has been shown to be particularly useful for the assessment of changes in oils after aging; spectral difference between Tragacanth and Arabic gum could be due to variations in origin and processing of raw materials. Analysis of these materials using non-destructive spectroscopic techniques provided important analytical information which could be used to guide further study.


Oils Gums Beeswax FTIR Raman Fluorescence Non-destructive analysis 



The authors thank the Italian MIUR for financial support of the project PRIN2007 “Colors and balms in antiquity: from the chemical study to the knowledge of technologies in cosmetics, painting and medicine” (Prot. 2007AKK9LX).

Supplementary material

216_2011_5168_MOESM1_ESM.pdf (331 kb)
S1–S4 (PDF 331 kb)


  1. 1.
    Tsoucaris G, Lipkowski J (ed) (2002) Molecular and Structural Archaeology: Cosmetic and therapeutic Chemicals. NATO Sci Ser 117Google Scholar
  2. 2.
    Gamberini MC, Baraldi C, Freguglia G, Baraldi P (2011) Spectral analysis of pharmaceutical formulations prepared according to ancient recipes in comparison with old museum remains. In this volumeGoogle Scholar
  3. 3.
    Pilc J, White R (1995) The application of FTIR-microscopy to the analysis of paint binders in easel paintings. Natl Gallery Tech Bull 16:73–84Google Scholar
  4. 4.
    Casadio F, Toniolo L (2001) The analysis of polychrome works of art: 40 years of infrared spectroscopic investigations. J Cult Herit 2:71–78CrossRefGoogle Scholar
  5. 5.
    Van der Weerd J, Van Loon A, Boon J (2005) FTIR studies of the effects of pigments on the ageing of oil. Stud Conserv 50:3–22Google Scholar
  6. 6.
    Dahlberg DB, Lee SM, Wenger SJ, Vargo JA (1997) Classification of vegetable oils by FT-IR. Appl Spectrosc 51:1118–1124CrossRefGoogle Scholar
  7. 7.
    Yang H, Irudayara J, Paradkar MM (2005) Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem 93:25–32CrossRefGoogle Scholar
  8. 8.
    Tapp HS, Defernez M, Kemsley EK (2003) FTIR spectroscopy and multivariate analysis can distinguish the geographic origin of extra virgin olive oils. J Agric Food Chem 51:6110–6115CrossRefGoogle Scholar
  9. 9.
    Lerma-Garcia MJ, Ramis-Ramos G, Herrero-Martinez JM, Simò-Alfonso EF (2010) Autentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem 118:78–83CrossRefGoogle Scholar
  10. 10.
    Che Man YB, Moh MH, Van de Voort FR (1999) Determination of free fatty acids in crude palm oil and refined-bleached-deodorized palm olein using Fourier transform infrared spectroscopy. J Am Oil Chem Soc 76(4):485–490CrossRefGoogle Scholar
  11. 11.
    Mills J, White R (1994) The organic chemistry of museum objects. Butterworth-Heinemann, OxfordGoogle Scholar
  12. 12.
    Bonaduce I, Brecoulaki H, Colombini MP, Lluveras A, Restivo V, Ribechini E (2007) Gas chromatographic–mass spectrometric characterization of plant gums in samples from painted works of art. J Chromatogr A 1175:275–282CrossRefGoogle Scholar
  13. 13.
    Riedo C, Scalarone D, Chiantore O (2010) Advances in identification of plant gums in cultural heritage by thermally assisted hydrolysis and methylation. Anal Bioanal Chem 396(4):1559–1569CrossRefGoogle Scholar
  14. 14.
    Kuan YH, Bhat R, Senan C, Williams PA, Karim A (2009) Effects of Ultraviolet irradiation on the physicochemical and functional properties of gum Arabic. J Agric Food Chem 57:9154–9159CrossRefGoogle Scholar
  15. 15.
    Edwards HGM, Farwell DW, Daffner L (1996) Fourier-transform Raman spectroscopic study of natural waxes and resins. I Spectrochim Acta A 52:1639–1648CrossRefGoogle Scholar
  16. 16.
    Vandenabeele P, Wehling B, Moens L, Edwards H, De Reu M, Van Hooydonk G (2000) Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Anal Chim Acta 407:261–274CrossRefGoogle Scholar
  17. 17.
    Campanella L, Chicco F, Colapietro M, Gatta T, Gregori E, Panfili M, Russo MV (2005) Characterization of wax manufactures of historical and artistic interest. Ann Chim 95:167–176CrossRefGoogle Scholar
  18. 18.
    Sikorska E, Gliszczyńska-Świgło A, Khmelinskii IV, Sikorski M (2005) Synchronous fluorescence spectroscopy of edible vegetable oils. Quantification of tocopherols. J Agric Food Chem 53(18):6988–6994CrossRefGoogle Scholar
  19. 19.
    Sadeghi-Jorabchi H, Wilson RH, Belton PS, Edwards-Webb JD, Coxon DT (1991) Quantitative analysis of oils and fats by FT Raman spectroscopy. Spectrochim Acta 47:1449–1458CrossRefGoogle Scholar
  20. 20.
    Lin-Vien D (1991) The handbook of infrared and raman characteristic frequencies of organic molecules. Academic, New YorkGoogle Scholar
  21. 21.
    Sikorska E, Romaniuk A, Khmelinskii IV, Herance R, Bourdelande JL, Sikorski M, Koziol J (2004) Characterization of edible oils using total luminescence spectroscopy. J Fluoresc 14(1):25–35CrossRefGoogle Scholar
  22. 22.
    Tan YA, Chong CL, Low KS (1995) Relationship between laser-induced fluorescence intensity and crude palm oil quality. J Sci Food Agric 67:375–379CrossRefGoogle Scholar
  23. 23.
    Sikorska E, Khmelinskii IV, Sikorski M, Caponio F, Bilancia MT, Pasqualone A, Gomes T (2008) Fluorescence spectroscopy in monitoring of extra virgin olive oil during storage. Int J Food Sci Technol 43:52–61CrossRefGoogle Scholar
  24. 24.
    Tena N, García-González DL, Aparicio R (2009) Evaluation of virgin olive oil thermal deterioration by fluorescence spectroscopy. J Agric Food Chem 57:10505–11051CrossRefGoogle Scholar
  25. 25.
    Guimet F, Ferré J, Boqué R, Vidal M, Garcia J (2005) Excitation–emission fluorescence spectroscopy combined with three-way methods of analysis as a complementary technique for olive oil characterization. J Agric Food Chem 53:9319–9328CrossRefGoogle Scholar
  26. 26.
    Yi J, Anderson ML, Skibsted LH (2011) Interactions between tocopherols, tocotrienols and carotenoids during autoxidation of mixed palm olein and fish oil. Food Chem 127:1792–1797CrossRefGoogle Scholar
  27. 27.
    Kyriakidis NB, Skarkalis P (2000) Fluorescence spectra measurement of olive oil and other vegetable oils. J Am Oil Chem Soc 83(6):1435–1439Google Scholar
  28. 28.
    Cheikhausma R, Zude M, Bouveresse DJR, Rutledge DN, Birlouez-Aragon I (2004) Fluorescence spectroscopy for monitoring extra virgin olive oil deterioration upon heating. Czech J Food Sci 22:147–150Google Scholar
  29. 29.
    Verleyen T, Kamal-Eldin A, Dobarganes C, Verhe R, Dewettinck K, Huyghebaert A (2001) Modeling of alpha-tocopherol loss and oxidation products formed during thermoxidation in triolein and tripalmitin mixtures. Lipids 36(7):719–726CrossRefGoogle Scholar
  30. 30.
    Regert M, Colinart S, Degrand L, Decavallas O (2001) Chemical alteration and use of beeswax through time: accelerated ageing tests and analysis of archaeological samples from various environmental contexts. Archaeometry 43(4):549–569CrossRefGoogle Scholar
  31. 31.
    Miyoshi T (1987) Fluorescence from varnishes for oil paintings under N2 laser excitation. Jpn J Appl Phys 26:780–781CrossRefGoogle Scholar
  32. 32.
    Larson LJ, Shin KSK, Zink JI (1991) Photoluminescence spectroscopy of natural resins and organic binding media of paintings. J Amer Inst Conserv 30(1):89–104CrossRefGoogle Scholar
  33. 33.
    Comelli D, Valentini G, Cubeddu R, Toniolo L (2005) Fluorescence lifetime imaging and fourier transform infrared spectroscopy of Michelangelo’s David. Appl Spectrosc 59(9):1171–1181CrossRefGoogle Scholar
  34. 34.
    Tomás-Barberán FA, Ferreres F, Tomás-Lorente F, Ortiz A (1993) Flavonoids from Apis mellifera beeswax. Z für Naturforschung 48C:68–72Google Scholar
  35. 35.
    Edwards HGM, Falk MJ, Sibley MG, Alvarez-Benedi J, Rull F (1998) FT-Raman spectroscopy of gums of technological significance. Spectrochim Acta A 54:903–920CrossRefGoogle Scholar
  36. 36.
    Renard D, Lavenant-Gourgeon L, Ralet MC, Sanchez C (2006) Acacia senegal gum: continuum of molecular species differing by their protein to sugar ratio, molecular weight and charges. Biomacromol 7:2637–2649CrossRefGoogle Scholar
  37. 37.
    Coimbra MA, Barros A, Barros M, Rutledge DN, Delgadillo I (1998) Multivariate analysis of uronic acid and neutral sugars in whole pectic samples by FT-IR spectroscopy. Carbohydr Polym 37:241–248CrossRefGoogle Scholar
  38. 38.
    Anderson DMW, Bridgeman MME (1985) The composition of the proteinaceous polysaccharides exuded by Astragalus microcephalus, A. gummifer and A. kurdicus—the sources of Turkish Gum Tragacanth. Phytochemistry 24(10):2301–2304CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • L. Brambilla
    • 1
    Email author
  • C. Riedo
    • 2
  • C. Baraldi
    • 3
  • A. Nevin
    • 4
  • M. C. Gamberini
    • 3
  • C. D’Andrea
    • 4
  • O. Chiantore
    • 2
  • S. Goidanich
    • 1
  • L. Toniolo
    • 1
  1. 1.Department CMICPolitecnico di MilanoMilanoItaly
  2. 2.Department of IPM Chemistry and NIS-Centre of ExcellenceUniversity of TurinTurinItaly
  3. 3.Department of Pharmaceutical Sciences, Institute of PharmacyUniversity of Modena and Reggio EmiliaModenaItaly
  4. 4.Department of PhysicsPolitecnico di MilanoMilanoItaly

Personalised recommendations