Analytical and Bioanalytical Chemistry

, Volume 401, Issue 3, pp 865–870 | Cite as

Investigation of the partially coherent effects in a 2D Talbot interferometer

  • Xin Ge
  • Zhili Wang
  • Kun Gao
  • Kai Zhang
  • Youli Hong
  • Dajiang Wang
  • Zhongzhu Zhu
  • Peiping Zhu
  • Ziyu Wu
Original Paper

Abstract

The recent use of a one-dimensional (1D) X-ray Talbot interferometer has triggered great interest in X-ray differential phase contrast imaging. As an improved version of a 1D interferometer, the development of two-dimensional (2D) grating interferometry strongly stimulated applications of grating-based imaging. In the framework of Fresnel diffraction theory, we investigated the self-image of 2D-phase gratings under partially coherent illumination. The fringe visibility of the self-image has been analyzed as a function of the spatial coherence length. From the viewpoint of self-image visibility, it is possible to find the optimal 2D grid for 2D X-ray grating interferometer imaging. Numerical simulations have been also carried out for quantitative evaluation. Results, in good agreement with theoretical analysis, indicate the spatial coherence requirements of the radiation illuminating a 2D grating interferometer. Moreover, our results can be used to optimize performances of a 2D grating interferometer and for further theoretical and experimental research on grating-based imaging systems.

Keywords

X-ray phase contrast 2D Talbot interferometer Partially coherent illumination Visibility 

Notes

Acknowledgments

We would like to gratefully acknowledge Dr. Augusto Marcelli for fruitful discussions. This work was partly supported by the National Outstanding Youth Fund (Project No. 10125523 to ZW), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N42), the Key Important Project of the National Natural Science Foundation of China (10734070), the National Natural Science Foundation of China (NSFC 10774144 and 10979055), and the National Basic Research Program of China (2009CB930804).

Supplementary material

216_2011_5146_MOESM1_ESM.pdf (70 kb)
ESM 1 (PDF 70 kb)

References

  1. 1.
    Weitkamp T, Diaz A, David C et al (2005) Opt Express 13(16):6296–6304CrossRefGoogle Scholar
  2. 2.
    Momose A (2005) Jpn J Appl Phys Part 1 44(9A):6355–6367CrossRefGoogle Scholar
  3. 3.
    Momose A (2003) Opt Express 11(19):2303–2314CrossRefGoogle Scholar
  4. 4.
    David C, Nohammer B, Solak HH et al (2002) Appl Phys Lett 81(17):3287–3289CrossRefGoogle Scholar
  5. 5.
    Momose A, Yashiro W, Maikusa H et al (2009) Opt Express 17(15):12540–12545CrossRefGoogle Scholar
  6. 6.
    Petibois C (2010) Anal Bioanal Chem 397(6):2051–2065CrossRefGoogle Scholar
  7. 7.
    Zhu P, Zhang K et al (2010) Proc Natl Acad Sci 107(31):13576–13581CrossRefGoogle Scholar
  8. 8.
    Pfeiffer F, Kottler C, Bunk O et al (2007) Phys Rev Lett 98(10):108105/108101–108105/108104CrossRefGoogle Scholar
  9. 9.
    Weitkamp T, David C, Kottler C et al (2006) Tomography with grating interferometers at low-brilliance sources. In: Bonse U (ed) Developments in X-ray tomography V. Proc. SPIE S3180–S3180Google Scholar
  10. 10.
    Pfeiffer F, Weitkamp T, Bunk O et al (2006) Nat Phys 2(4):258–261CrossRefGoogle Scholar
  11. 11.
    Zanette I, David C, Rutishauser S et al (2010) 2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer. In: Denecke M, Walker C (eds) X-ray optics and microanalysis, Proceedings, 2010. American Institute of Physics, pp 73–79Google Scholar
  12. 12.
    Zanette I, Weitkamp T, Donath T et al (2010) Phys Rev Lett 105(24):248102CrossRefGoogle Scholar
  13. 13.
    Ming J, Christopher Lee W, Ge W (2008) Int J Biomed Imaging 397(6):2137–2141Google Scholar
  14. 14.
    Yokozeki S, Suzuki T (1971) Appl Optics 10(7):1575–1580CrossRefGoogle Scholar
  15. 15.
    Lohmann A, Silva D (1971) Opt Commun 2(9):413–415CrossRefGoogle Scholar
  16. 16.
    Wang Z, Zhu P, Huang W et al (2010) Anal Bioanal Chem 397(6):2091–2094CrossRefGoogle Scholar
  17. 17.
    Reznikova E, Mohr J, Boerner M et al (2008) Microsyst Technol 14(9–11):1683–1688CrossRefGoogle Scholar
  18. 18.
    David C, Bruder J, Rohbeck T et al (2007) Microelectron Eng 84(5–8):1172–1177CrossRefGoogle Scholar
  19. 19.
    Weitkamp T, Zanette I, David C et al (2010) Recent developments in X-ray Talbot interferometry at ESRF-ID19. In: Stock SR (ed) Developments in X-ray tomography VII. Proc. SPIE, p 780406 (780410 pp)Google Scholar
  20. 20.
    Weitkamp T, Tafforeau P, Boller E et al (2010) Status and evolution of the ESRF beamline ID19. In: Denecke M, Walker C (eds) X-ray optics and microanalysis. American Institute of Physics, pp 33–38Google Scholar
  21. 21.
    Engelhardt M, Baumann J, Schuster M et al (2007) Appl Phys Lett 90(22):224101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Xin Ge
    • 1
  • Zhili Wang
    • 1
    • 2
  • Kun Gao
    • 1
  • Kai Zhang
    • 2
  • Youli Hong
    • 2
  • Dajiang Wang
    • 1
  • Zhongzhu Zhu
    • 2
  • Peiping Zhu
    • 2
  • Ziyu Wu
    • 1
    • 2
  1. 1.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations