Advertisement

Analytical and Bioanalytical Chemistry

, Volume 401, Issue 3, pp 827–835 | Cite as

Detecting small lung tumors in mouse models by refractive-index microradiology

  • Chia-Chi Chien
  • Guilin Zhang
  • Y. Hwu
  • Ping Liu
  • Weisheng Yue
  • Jianqi Sun
  • Yan Li
  • Hongjie Xue
  • Lisa X. Xu
  • Chang Hai Wang
  • Nanyow Chen
  • Chien Hung Lu
  • Ting-Kuo Lee
  • Yuh-Cheng Yang
  • Yen-Ta Lu
  • Yu-Tai Ching
  • T. F. Shih
  • P. C. Yang
  • J. H. Je
  • G. Margaritondo
Original Paper

Abstract

Refractive-index (phase-contrast) radiology was able to detect lung tumors less than 1 mm in live mice. Significant micromorphology differences were observed in the microradiographs between normal, inflamed, and lung cancer tissues. This was made possible by the high phase contrast and by the fast image taking that reduces the motion blur. The detection of cancer and inflammation areas by phase contrast microradiology and microtomography was validated by bioluminescence and histopathological analysis. The smallest tumor detected is less than 1 mm3 with accuracy better than 1 × 10−3 mm3. This level of performance is currently suitable for animal studies, while further developments are required for clinical application.

Figure

Refractive-index microradiology detects small lung cancer tumors (<1 mm) in vivo, with precise size measurements, and yields tomographically reconstructed pictures of tumors on the same scale

Keywords

Lung cancer Synchrotron X-ray imaging Real-time imaging 

Notes

Acknowledgements

We thank Ms. Yijing Guan for computer processing and Dr. Cyril Petibois for fruitful discussion. This work was supported by NNSF of 11079049 (China) and by CAS of KJCX3,SYW.N3 (China), NPST for Nanoscience and Nanotechnology, Thematic Program of Academia Sinica, the Biomedical NanoImaging Core Facility(Taiwan), Fonds National Suisse, Lausanne Center for Biomedical Imaging (CIBM), and the Creative Research Initiatives (Functional X-ray Imaging) of MOST/KOSEF (Korea).

Supplementary material

216_2011_5117_MOESM1_ESM.pdf (732 kb)
ESM 1 (PDF 732 kb)

References

  1. 1.
    Baldwin DR (2011) Imaging in lung cancer: recent advances in PET-CT and screening. Thorax 66:275–277CrossRefGoogle Scholar
  2. 2.
    Van’t Westeinde SC, van Klaveren RJ (2011) Screening and early detection of lung cancer. Cancer J 17:3–10CrossRefGoogle Scholar
  3. 3.
    Henschke CI, Yankelevitz DF, Libby DM, Pasmantier MW, Smith JP, Miettinen OS (2006) Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med 355:1763–1771CrossRefGoogle Scholar
  4. 4.
    Bach PB, Jett JR, Pastorino U, Tockman MS, Swensen SJ, Begg CB (2007) Computed tomography screening and lung cancer outcomes. Jama 297:953–961CrossRefGoogle Scholar
  5. 5.
    Liang EY, Chan M, Hsiang JH, Walkden SB, Poon WS, Lam WW, Metreweli C (1995) Detection and assessment of intracranial aneurysms: value of CT angiography with shaded-surface display. AJR Am J Roentgenol 165:1497–1502Google Scholar
  6. 6.
    Jankowski A, Martinelli T, Timsit JF, Brambilla C, Thony F, Coulomb M, Ferretti G (2007) Pulmonary nodule detection on MDCT images: evaluation of diagnostic performance using thin axial images, maximum intensity projections, and computer-assisted detection. Eur Radiol 17:3148–3156CrossRefGoogle Scholar
  7. 7.
    Mulshine JL, Sullivan DC (2005) Clinical practice. Lung cancer screening. N Engl J Med 352:2714–2720CrossRefGoogle Scholar
  8. 8.
    Swensen SJ, Jett JR, Hartman TE, Midthun DE, Mandrekar SJ, Hillman SL, Sykes AM, Aughenbaugh GL, Bungum AO, Allen KL (2005) CT screening for lung cancer: five-year prospective experience. Radiology 235:259–265CrossRefGoogle Scholar
  9. 9.
    Markowitz SB, Miller A, Miller J, Manowitz A, Kieding S, Sider L, Morabia A (2007) Ability of low-dose helical CT to distinguish between benign and malignant noncalcified lung nodules. Chest 131:1028–1034CrossRefGoogle Scholar
  10. 10.
    Haberkorn U, Schoenberg SO (2001) Imaging of lung cancer with CT, MRT and PET. Lung Cancer 34(Suppl 3):S13–S23CrossRefGoogle Scholar
  11. 11.
    Yi CA, Jeon TY, Lee KS, Lee JH, Seo JB, Kim YK, Chung MJ (2007) 3-T MRI: usefulness for evaluating primary lung cancer and small nodules in lobes not containing primary tumors. Am J Roentgenol 189(2):386–392CrossRefGoogle Scholar
  12. 12.
    Ung YC, Maziak DE, Vanderveen JA, Smith CA, Gulenchyn K, Lacchetti C, Evans WK (2007) 18Fluorodeoxyglucose positron emission tomography in the diagnosis and staging of lung cancer: a systematic review. J Natl Cancer Inst 99:1753–1767CrossRefGoogle Scholar
  13. 13.
    Greco C, Rosenzweig K, Cascini GL, Tamburrini O (2007) Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 57:125–134CrossRefGoogle Scholar
  14. 14.
    Meuli R, Hwu Y, Je JH, Margaritondo G (2004) Synchrotron radiation in radiology: radiology techniques based on synchrotron sources. Eur Radiol 14:1550–1560CrossRefGoogle Scholar
  15. 15.
    Hwu Y, Tsai W-L, Groso A, Margaritondo G, Je JH (2002) Coherence-enhanced synchrotron radiology: simple theory and practical applications. J Phys D Appl Phys 35:R105–R120CrossRefGoogle Scholar
  16. 16.
    Castelli E, Arfelli F, Dreossi D, Longo R, Rokvic T, Cova MA, Quaia E, Tonutti M, Zanconati F, Abrami A, Chenda V, Menk RH, Quai E, Tromba G, Bregant P, de Guarrini F (2007) Clinical mammography at the SYRMEP beam line. Nucl Instr Meth Phys Res A 572:237–240CrossRefGoogle Scholar
  17. 17.
    Elleaume H, Fiedler S, Esteve F, Bertrand B, Charvet AM, Berkvens P, Berruyer G, Brochard T, Le Duc G, Nemoz C, Renier M, Suortti P, Thomlinson W, Le Bas JF (2000) First human transvenous coronary angiography at the European Synchrotron Radiation Facility. Phys Med Biol 45:L39–L43CrossRefGoogle Scholar
  18. 18.
    Dix WR, Kupper W, Dill T, Hamm CW, Job H, Lohmann M, Reime B, Ventura R (2003) Comparison of intravenous coronary angiography using synchrotron radiation with selective coronary angiography. J Synchrotron Radiat 10:219–227CrossRefGoogle Scholar
  19. 19.
    Dreossi D, Abrami A, Arfelli F, Bregant P, Casarin K, Chenda V, Cova MA, Longo R, Menk RH, Quai E, Quaia E, Rigon L, Rokvic T, Sanabor D, Tonutti M, Tromba G, Vascotto A, Zanconati F, Castelli E (2008) The mammography project at the SYRMEP beamline. Eur J Radiol 68:S58–S62CrossRefGoogle Scholar
  20. 20.
    Fiedler S, Bravin A, Keyrilainen J, Fernandez M, Suortti P, Thomlinson W, Tenhunen M, Virkkunen P, Karjalainen-Lindsberg M (2004) Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology. Phys Med Biol 49:175–188CrossRefGoogle Scholar
  21. 21.
    Hooper SB, Kitchen MJ, Siew ML, Lewis RA, Fouras A, te Pas AB, Siu KK, Yagi N, Uesugi K, Wallace MJ (2009) Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging. Clin Exp Pharmacol Physiol 36:117–125CrossRefGoogle Scholar
  22. 22.
    Zhang L, Li D, Luo S (2011) Non-invasive microstructure and morphology investigation of the mouse lung: qualitative description and quantitative measurement. PLoS ONE 6:e17400CrossRefGoogle Scholar
  23. 23.
    Liu P, Sun J, Guan Y, Yue W, Xu LX, Li Y, Zhang G, Hwu Y, Je JH, Margaritondo G (2008) Morphological study of early-stage lung cancer using synchrotron radiation. J Synchrotron Radiat 15:36–42CrossRefGoogle Scholar
  24. 24.
    Hwu Y, Tsai WL, Chang HM, Yeh HI, Hsu PC, Yang YC, Su YT, Tsai HL, Chow GM, Ho PC, Li SC, Moser HO, Yang P, Seol SK, Kim CC, Je JH, Stefanekova E, Groso A, Margaritondo G (2004) Imaging cells and tissues with refractive index radiology. Biophys J 87:4180–4187CrossRefGoogle Scholar
  25. 25.
    Song YF, Chang CH, Liu CY, Chang SH, Jeng US, Lai YH, Liu DG, Chung SC, Tsang KL, Yin GC, Lee JF, Sheu HS, Tang MT, Hwang CS, Hwu YK, Liang KS (2007) X-ray beamlines for structural studies at the NSRRC superconducting wavelength shifter. J Synchrotron Radiat 14:320–325CrossRefGoogle Scholar
  26. 26.
    Baik S, Kim HS, Jeong MH, Lee CS, Je JH, Hwu Y, Margaritondo G (2004) International consortium on phase contrast imaging and radiology beamline at the Pohang Light Source. Rev Sci Instrum 75:4355–4358CrossRefGoogle Scholar
  27. 27.
    Margaritondo G, Hwu Y, Je JH (2004) Synchrotron light in medical and materials science radiology. Riv Nuovo Cimento 27:1–40Google Scholar
  28. 28.
    Hwu Y, Je JH, Margaritondo G (2005) Real-time radiology in the microscale. Nucl Instrum Meth A 551:108–118CrossRefGoogle Scholar
  29. 29.
    Hamide JP, Qian Z, Xu H, Diethelm L, Skrepnik N, Castaneda-Zuniga WR, Hunt JD (1997) Percutaneous implantation of non-small-cell lung carcinoma: technique and observations. Acad Radiol 4:629–633CrossRefGoogle Scholar
  30. 30.
    Tong Y, Zhang G, Li Y, Tan M, Wang W, Chen J, Hwu Y, Hsu PC, Je JH, Margaritondo G, Song W, Jiang R, Jiang Z (2006) Synchrotron microradiography study on acute lung injury of mouse caused by PM(2.5) aerosols. Eur J Radiol 58:266–272CrossRefGoogle Scholar
  31. 31.
    Yue W, Zhang G, Liu P, Sun J, Yeukuang H, Je JH, Tan M, Li Y (2007) Aerosol-induced lung injuries observed by synchrotron radiation X-ray phase-contrast imaging technique, vol. 262, no. 2. Elsevier, Amsterdam, PAYS-BASGoogle Scholar
  32. 32.
    Su WY, Jaskot RH, Richards J, Abramson SR, Woessner JF Jr, Yu WH, Dreher KL (2000) Induction of pulmonary matrilysin expression by combustion and ambient air particles. Am J Physiol Lung Cell Mol Physiol 279:L152–L160Google Scholar
  33. 33.
    Canny J (1986) A computational approach to edge detection. Pattern analysis and machine intelligence. IEEE Trans PAMI 8:679–698CrossRefGoogle Scholar
  34. 34.
    Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7:359–369CrossRefGoogle Scholar
  35. 35.
    Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1:321–331CrossRefGoogle Scholar
  36. 36.
    Kitchen MJ, Paganin D, Lewis RA, Yagi N, Uesugi K, Mudie ST (2004) On the origin of speckle in x-ray phase contrast images of lung tissue. Phys Med Biol 49:4335–4348CrossRefGoogle Scholar
  37. 37.
    Tuohimaa T, Otendal M, Hertz HM (2007) Phase-contrast x-ray imaging with a liquid-metal-jet-anode microfocus source. Appl Phys Lett 91:074104CrossRefGoogle Scholar
  38. 38.
    Lazzaro PD, Bollanti S, Conti A, Flora F, Mezi L, Murra D, Zheng CE (2005) Recent results of laser-driven EUV and soft X-rays plasma source at ENEA Frascati. Proc SPIE 5958:595814CrossRefGoogle Scholar
  39. 39.
    Krol A, Ikhlef A, Kieffer JC, Bassano DA, Chamberlain CC, Jiang Z, Pepin H, Prasad SC (1997) Laser-based microfocused x-ray source for mammography: feasibility study. Med Phys 24:725–732CrossRefGoogle Scholar
  40. 40.
    Yamada H (2003) Novel X-ray source based on a tabletop synchrotron and its unique features. Nucl Instrum Methods Phys Res B 199:509–516CrossRefGoogle Scholar
  41. 41.
    Zheng D, Frederick WJ, DeStefano C, Vlieks AE, Landahl E, Kwan A, Heritage JP, Norman A, Boone JM, Luhmann NC (2006) The monochromatic Compton X-ray source for cancer diagnostics and therapy. Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, pp 580–580Google Scholar
  42. 42.
    Vlieks AE, Akre R, Caryotakis G, Destefano C, Frederick WJ, Heritage JP, Luhmann NC, Martin D, Pellegrini C (2006) Recent measurements and plans for the SLAC Compton X-ray source. AIP Conf Proc 807:481–490CrossRefGoogle Scholar
  43. 43.
    Hwu Y, Tsai WL, Je JH, Seol SK, Kim B, Groso A, Margaritondo G, Lee KH, Seong JK (2004) Synchrotron microangiography with no contrast agent. Phys Med Biol 49:501–508CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Chia-Chi Chien
    • 1
    • 3
  • Guilin Zhang
    • 2
  • Y. Hwu
    • 1
    • 3
  • Ping Liu
    • 4
  • Weisheng Yue
    • 2
  • Jianqi Sun
    • 4
  • Yan Li
    • 2
  • Hongjie Xue
    • 2
  • Lisa X. Xu
    • 4
  • Chang Hai Wang
    • 1
  • Nanyow Chen
    • 1
  • Chien Hung Lu
    • 1
  • Ting-Kuo Lee
    • 1
  • Yuh-Cheng Yang
    • 5
  • Yen-Ta Lu
    • 5
  • Yu-Tai Ching
    • 6
  • T. F. Shih
    • 7
  • P. C. Yang
    • 7
  • J. H. Je
    • 8
  • G. Margaritondo
    • 9
  1. 1.Institute of PhysicsAcademia SinicaTaipeiTaiwan
  2. 2.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  3. 3.Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchuTaiwan
  4. 4.Shanghai Jiao Tong UniversityShanghaiChina
  5. 5.Mackay Memorial HospitalTaipei CityTaiwan
  6. 6.Department of Computer ScienceNational Chiao Tung UniversityHsinchuTaiwan
  7. 7.College of MedicineNational Taiwan UniversityTaipeiTaiwan
  8. 8.X-ray Imaging CenterPohang University of Science and Technology PohangPohang CTSouth Korea
  9. 9.Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations