Advertisement

Analytical and Bioanalytical Chemistry

, Volume 401, Issue 2, pp 677–688 | Cite as

Investigation on the phenolic constituents in Hamamelis virginiana leaves by HPLC-DAD and LC-MS/MS

  • Sarina M. Duckstein
  • Florian C. StintzingEmail author
Original Paper

Abstract

Aqueous and acetone/water extracts from Hamamelis virginiana leaves were investigated to obtain a thorough insight into their phenolic composition. To secure compound integrity, a gentle extraction method including the exclusion of light was used. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses yielded a fingerprint including 27 phenolic constituents. Quantification of the key compounds on an equivalent basis by high-performance liquid chromatography diode-array detection (HPLC-DAD) showed that gallotannins consisting of six to 11 galloyl units constitute the main fraction, whereas procyanidins and catechin represented only a minor part. Closer inspection revealed that both extracts possess virtually the same galloyl hexose distribution, and the octagalloyl hexose represents the major tannin constituent. Additionally, eight flavonol glycosides and their corresponding aglycones quercetin and kaempferol, as well as three chlorogenic acid isomers and other hydroxycinnamic acids, were identified. Moreover, stability studies on the aqueous extract (5 °C, dark; room temperature, dark; room temperature, light) revealed that the phenolic profile underwent changes when exposed to light. Especially the gallotannins proved to be considerably unstable which may result in phytochemically altered Hamamelis leaf extracts upon transport and storage.

Figure

Phenolic constituents in Hamamelis.virginiana leaves

Keywords

Hamamelis virginiana Gallotannins Chlorogenic acids Flavonol glycosides HPLC-DAD-MS/MS Stability 

Notes

Acknowledgement

The authors wish to thank Prof. Dr. habil. Dr. h. c. R. Carle and Dr. D. R. Kammerer (Institute of Food Science and Biotechnology, Hohenheim University, Stuttgart, Germany) for providing access to the illumination equipment.

References

  1. 1.
    Laux P, Oschmann R (1993) Z Phytother 14:155–166Google Scholar
  2. 2.
    Reuter J, Merfort I, Schempp CM (2010) Am J Clin Dermatol 11:247–267Google Scholar
  3. 3.
    Mingshu L, Kai Y, Qiang H, Dongying J (2006) J Basic Microbiol 46:68–84CrossRefGoogle Scholar
  4. 4.
    Vennat B, Gross D, Pourrat A, Pourrat H (1992) Pharm Acta Helv 67:11–14Google Scholar
  5. 5.
    Vennat B, Pourrat H, Pouget MP, Gross D, Pourrat A (1988) Planta Med 54:454–457CrossRefGoogle Scholar
  6. 6.
    Gonzalez MJ, Torres JL, Medina I (2010) J Agric Food Chem 58:4274–4283CrossRefGoogle Scholar
  7. 7.
    Schilling G, Keller A (1986) J Biosci 41:253–257Google Scholar
  8. 8.
    Wang H, Provan GJ, Helliwell K (2003) J Pharm Biomed Anal 33:539–544CrossRefGoogle Scholar
  9. 9.
    Friedrich H, Krüger N (1974) Planta Med 26:326–332Google Scholar
  10. 10.
    Sagareishvili TG, Yarosh EA, Kemertelidze EP (1999) Chem Nat Compd 35:585CrossRefGoogle Scholar
  11. 11.
    Hümmer W, Schreier P (2008) Mol Nutr Food Res 52:1381–1398CrossRefGoogle Scholar
  12. 12.
    Carelli V, Liquori AM, Mele A (1955) Nature 176:70–71CrossRefGoogle Scholar
  13. 13.
    Salminen JP (2003) J Chem Ecol 29:1289–1305CrossRefGoogle Scholar
  14. 14.
    Jaiswal R, Sovdat T, Vivan F, Kuhnert N (2010) J Agric Food Chem 58:5471–5484CrossRefGoogle Scholar
  15. 15.
    Rohr GE, Riggio G, Meier B, Sticher O (2000) Phytochem Anal 11:113–120CrossRefGoogle Scholar
  16. 16.
    Appeldoorn MM, Vincken JP, Sanders M, Hollman PC, Gruppen H (2009) J Agric Food Chem 57:6007–6013CrossRefGoogle Scholar
  17. 17.
    Hokkanen J, Mattila S, Jaakola L, Pirttila AM, Tolonen A (2009) J Agric Food Chem 57:9437–9447CrossRefGoogle Scholar
  18. 18.
    Engels C, Gänzle MG, Schieber A (2010) J Agric Food Chem 58:775–780CrossRefGoogle Scholar
  19. 19.
    Hoffmann-Bohm K, Ferstl W, Aye RD (2009) Hager Rom - Hagers Enzyklopädie der Arzneistoffe und Drogen. Springer, StuttgartGoogle Scholar
  20. 20.
    Herrmann K (1978) Fortschr Chem Org Naturst 35:73–132Google Scholar
  21. 21.
    Kroon PA, Williamson G (2010) J Sci Food Agric 79:355–361CrossRefGoogle Scholar
  22. 22.
    Marques V, Farah A (2009) Food Chem 113:1370–1376CrossRefGoogle Scholar
  23. 23.
    Berardini N, Carle R, Schieber A (2004) Rapid Commun Mass Spectrom 18:2208–2216CrossRefGoogle Scholar
  24. 24.
    Mullen W, Yokota T, Lean ME, Crozier A (2003) Phytochemistry 64:617–624CrossRefGoogle Scholar
  25. 25.
    Grundhöfer P, Niemetz R, Schilling G, Gross GG (2001) Phytochemistry 57:915–927CrossRefGoogle Scholar
  26. 26.
    Hatano T, Kira R, Yoshizaki M, Okuda T (1986) Phytochemistry 25:2787–2789CrossRefGoogle Scholar
  27. 27.
    Rodriguez de Sotillo D, Hadley M, Holm ET (1994) J Food Sci 59:649–651CrossRefGoogle Scholar
  28. 28.
    Fahlman BM, Krol ES (2009) J Photochem Photobiol B 97:123–131CrossRefGoogle Scholar
  29. 29.
    Smith GJ, Thomsen SJ, Markham KR, Andary C, Cardon D (2000) J Photochem Photobiol Chem 136:87–91CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.WALA Heilmittel GmbHBad Boll/EckwäldenGermany

Personalised recommendations