Advertisement

Analytical and Bioanalytical Chemistry

, Volume 401, Issue 3, pp 817–825 | Cite as

3D configuration of mandibles and controlling muscles in rove beetles based on micro-CT technique

  • Dee Li
  • Kai Zhang
  • Peiping Zhu
  • Ziyu Wu
  • Hongzhang Zhou
Original Paper

Abstract

X-ray micro-CT is a powerful tool to visualize without damage details of the inner structures of beetles, the largest order of insects with a hard external skeleton. This contribution shows the three-dimensional (3D) reconstruction of the head morphology of three rove beetle species (Insecta, Coleoptera, Staphylinidae)—Noddia sp., Creophilus maxillosus, and Hesperosoma sp.—using X-ray microtomography at a spatial resolution of 6 μm. The details of skeletal muscle fiber insertions are described, giving a comprehensive overview of mandible mobility and organization. With the support of 3D rendering, we discuss the relationship among the mandible forms, the development of the muscles controlling the movement, and the head morphology. The well-developed posterior part of the head capsule is always accompanied by a well-developed mandible, a large adductor muscle, and a large apodeme for the wide areas of the muscle fiber attachment. In Noddia sp., muscles connected to the posterolateral angle of the head capsule are mainly short muscles, whereas in Creophilus maxillosus, the latter are mainly long muscles, and in Hesperosoma sp. no mandible adductor muscle fibers are present on the posterolateral angle of the head capsule. These results offer new invaluable information regarding the biting functions of beetle mandibles and the trend of their morphological change during their long-term evolution.

Keywords

Mandible Mandible muscles Three-dimensional reconstruction Head capsule Staphylininae 

Notes

Acknowledgements

We are very grateful to Augusto Marcelli (Istituto Nazionale di Fisica Nucleare, Frascati, Italy) and four anonymous reviewers for their valuable suggestions to improve the manuscript. This study was partly supported by the National Natural Science Foundation of China (NSFC-31071909, NSFC-J0930004), the Key Important Project of the National Natural Science Foundation of China (10734070), the National Key Technology R&D Program (2008BAC39B02), and the CAS Innovation Program (KSCX2-YW-Z-0910, KJCX2-YW-N42). The authors also acknowledge a grant from the Key Laboratory of Zoological Systematics and Evolution of CAS (no. O529YX5105).

References

  1. 1.
    Smetana A, Davies A (2000) Am Mus Novit 1–88Google Scholar
  2. 2.
    Blackwelder RE (1936) Smithson Misc Collect 94:102Google Scholar
  3. 3.
    Naomi S-I (1987) Kontytu 55:38–48Google Scholar
  4. 4.
    Naomi S-I (1987) Kontytu 55:28–36Google Scholar
  5. 5.
    Naomi S-I (1988) Kontytu 56:67–77Google Scholar
  6. 6.
    Beutel RG, Leschen RAB (2005) Syst Entomol 30:510–548CrossRefGoogle Scholar
  7. 7.
    Hansen M (1997) Phylogeny and classification of the staphyliniform beetle families (Coleoptera). Det Kongelike Danske Videnskabernes, CopenhagenGoogle Scholar
  8. 8.
    Paul J (2001) Comp Biochem Physiol A Mol Integr Physiol 131:7–20CrossRefGoogle Scholar
  9. 9.
    Paul J, Gronenberg W (1999) J Exp Biol 202:797–808Google Scholar
  10. 10.
    Wheater CP, Evans MEG (1989) J Insect Physiol 35:815–820CrossRefGoogle Scholar
  11. 11.
    Manton SM, Harding JP (1964) Philos Trans R Soc Lond B Biol Sci 247:1–183CrossRefGoogle Scholar
  12. 12.
    Kéler SV (1963) Entomologisches Wörterbuch. Akademie, BerlinGoogle Scholar
  13. 13.
    Snodgrass RE (1935) Principles of insect morphology. Cornell University Press, IthacaGoogle Scholar
  14. 14.
    Gorb S, Beutel RG (2000) J Morphol 244:1–14CrossRefGoogle Scholar
  15. 15.
    Barman EH (2005) Coleopt Bull 59:351–360CrossRefGoogle Scholar
  16. 16.
    Barman EH (2004) Coleopt Bull 58:661–671CrossRefGoogle Scholar
  17. 17.
    Barman EH, Wall WP, Mouton A, Fenn TR (2008) Coleopt Bull 62:279–286CrossRefGoogle Scholar
  18. 18.
    Betz O, Thayer MK, Newton AF (2003) Acta Zool 84:179–238CrossRefGoogle Scholar
  19. 19.
    Zhang K, Li D-e, Zhu P, Yuan Q, Huang W, Liu X, Hong Y, Gao G, Ge X, Zhou H, Wu Z (2010) Anal Bioanal Chem 397:2143–2148Google Scholar
  20. 20.
    Weide D, Betz O (2009) J Morphol 270:1503–1523CrossRefGoogle Scholar
  21. 21.
    Beutel RG, Ge S-q, Hönschemeyer T (2008) Cladistics 24:270–298CrossRefGoogle Scholar
  22. 22.
    Hörnschemeyer T, Beutel RG, Pasop F (2002) J Morphol 252:298–314CrossRefGoogle Scholar
  23. 23.
    Betz O, Wegst U, Weide D, Heethoff M, Helfen L, Lee W-K, Cloetens P (2007) J Microsc 227:51–71CrossRefGoogle Scholar
  24. 24.
    Gronenberg W, BrandÃO CRF, Dietz BH, Just S (1998) Physiol Entomol 23:227–240CrossRefGoogle Scholar
  25. 25.
    Gautestad AO, Mysterud I (1993) J Appl Ecol 30:523–535CrossRefGoogle Scholar
  26. 26.
    Gronenberg W, Paul J, Just S, Hölldobler B (1997) Cell Tissue Res 289:347–361CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Key Laboratory of the Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
  2. 2.Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  3. 3.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina
  4. 4.Graduate School of the Chinese Academy of ScienceBeijingChina

Personalised recommendations