Analytical and Bioanalytical Chemistry

, Volume 401, Issue 9, pp 2681–2689 | Cite as

A matrix effect and accuracy evaluation for the determination of elements in milk powder LIBS and laser ablation/ICP-OES spectrometry

  • N. Gilon
  • J. El-Haddad
  • A. Stankova
  • W. Lei
  • Q. Ma
  • V. Motto-Ros
  • J. Yu
Original Paper


Laser ablation coupled to inductively coupled plasma optical emission spectrometry (LA-ICP-OES) and laser-induced breakdown spectroscopy (LIBS) were investigated for the determination of Ca, Mg, Zn and Na in milk samples. The accuracy of both methods was evaluated by comparison of the concentration found using LA-ICP-OES and LIBS with classical wet digestion associated with ICP-OES determination. The results were not fully acceptable, with biases from less than 1% to more than 60%. Matrix effects were also investigated. The sample matrix can influence the temperature, electron number density (n e) and other excitation characteristics in the ICP. These ICP characteristics were studied and evaluated during ablation of eight milk samples. Differences in n e (from 8.9 to 13.8 × 1014 cm−3) and rotational temperature (ranging from 3,400 to 4,400 K) occurred with no correlation with trueness. LIBS results obtained after classical external calibration procedure gave degraded accuracy, indicating a strong matrix effect. The LIBS measurements clearly showed that the major problem in LA-ICP was related to the ablation process and that LIBS spectroscopy is an excellent diagnostic tool for LA-ICP techniques.


Inductively coupled plasma Laser-induced plasma Optical spectrometry Temperatures Matrix effects 


  1. 1.
    Glaus R, Kaegi R, Krumeich F, Günther D (2010) Spectrochim ActaB 65:812–882CrossRefGoogle Scholar
  2. 2.
    Miziolek AW, Palleschi V, Chechter IS (eds) (2006) Laser-induced breakdown spectroscopy (LIBS): fundamentals and applications. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Cremers DA, Radziemski L (2006) Handbook of laser-induced breakdown spectroscopy. Wiley, New YorkCrossRefGoogle Scholar
  4. 4.
    Russo RE, Mao X, Liu H, Gonzales J, Mao SS (2002) Talanta 57:425–451CrossRefGoogle Scholar
  5. 5.
    Aeschliman DB, Bajic SJ, Baldwin DP, Houk RS (2003) J Anal At Spectrom 18:1008–1014CrossRefGoogle Scholar
  6. 6.
    Fornarini L, Spizzichino V, Colao F, Fantoni R, Lazic V (2006) Anal Bioanal Chem 385:272–280CrossRefGoogle Scholar
  7. 7.
    Zeng X, Mao XL, Greif R, Russo RE (2005) Appl Phys A 80:237–241CrossRefGoogle Scholar
  8. 8.
    Aguilera JA, Aragon C, Madurga V, Manrique J (2009) Spectrochim Acta B 64:993–998CrossRefGoogle Scholar
  9. 9.
    Frontela C, Ros G, Martinez C (2009) Eur Food Res Technol 228:789–797CrossRefGoogle Scholar
  10. 10.
    Fantino M, Gourmet E (2008) Arch Pédiatr 15:446–455CrossRefGoogle Scholar
  11. 11.
    Houk RS, Zhai Y (2001) Spectrochim Acta PartB 56:1055–1067CrossRefGoogle Scholar
  12. 12.
    Tang YQ, Trassy C (1986) Spectrochim Acta PartB 4:143–150CrossRefGoogle Scholar
  13. 13.
    Bourasseau D, Cabannes F, Chapelle J (2003) A&A 405:397–403CrossRefGoogle Scholar
  14. 14.
    Milosavljevic V, Djeni S (2003) A&A 4:397–403CrossRefGoogle Scholar
  15. 15.
    Alder JF, Bomeselka RM, Kirkbright GF (1980) Spectrochim Acta B 35:163–175CrossRefGoogle Scholar
  16. 16.
    Riviere B, Mermet JM, Deruaz D (1988) J Anal At Spectrom 3:551–555CrossRefGoogle Scholar
  17. 17.
    Mermet JM (1987) In: Boumans PWJM (ed) Inductively coupled plasma emission spectroscopy, part II, vol 90. Wiley, New YorkGoogle Scholar
  18. 18.
    Ebdon L, Goodall P (1992) J Anal At Spectrom 7:1111–1116CrossRefGoogle Scholar
  19. 19.
    Chan GCY, Chan WT, Mao X, Russo RE (2001) Spectrochim Acta B 56:1375–1386CrossRefGoogle Scholar
  20. 20.
    Chan GCY, Chan WT, Mao X, Russo RE (2001) Spectrochim Acta B 56:77–92CrossRefGoogle Scholar
  21. 21.
    Tognoni E, Hidalgo M, Canals A, Cristoforetti G, Legnaioli S, Palleschi V (2009) J Anal At Spectrom 24:655–662CrossRefGoogle Scholar
  22. 22.
    Lei WQ, El Haddad J, Motto-Ros V, Gilon N, Stankova A, Ma QL, Bai X S, Zheng LJ, Zeng HP, Yu J (2011) Anal Bioanal Chem. doi: 10.1007/s00216-011-4813-x
  23. 23.
    Stankova A, Dutruch L, Gilon N, Kanicky V (2011) J Anal At Spectrom 26:443–449CrossRefGoogle Scholar
  24. 24.
    Pohl P, Broekaert JAC (2010) Anal Bioanal Chem 398:537–545CrossRefGoogle Scholar
  25. 25.
    Acon BW, Stehl C, Zhang H, Montaser A (2001) Spectrochim Acta B 56:527–539CrossRefGoogle Scholar
  26. 26.
    Caughlin BL, Blades MW (1984) Spectrochim Acta B 398:1583–1602CrossRefGoogle Scholar
  27. 27.
    NIST Atomic Spectra Database (2010) Available at
  28. 28.
    Abdalha MH, Mermet JM (1982) Spectromchim Acta 378:391–397CrossRefGoogle Scholar
  29. 29.
    Weagant S, Karanassios V (2009) Anal Bioanal Chem 395:577–589CrossRefGoogle Scholar
  30. 30.
    Alloncle G, Gilon N, Lienemann CP, Morin S (2009) Comptes rendus chimie 12:637–646CrossRefGoogle Scholar
  31. 31.
    Mermet JM (1991) Anal Chim Acta 250:85–94CrossRefGoogle Scholar
  32. 32.
    Ohata M, Yasuda H, Namai Y, Furuta N (2002) Anal Sci 18:1105–1110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • N. Gilon
    • 1
  • J. El-Haddad
    • 1
    • 2
  • A. Stankova
    • 1
  • W. Lei
    • 2
  • Q. Ma
    • 2
  • V. Motto-Ros
    • 2
  • J. Yu
    • 2
  1. 1.Laboratoire des Sciences Analytiques, UMR CNRS 5180Université de LyonVilleurbanneFrance
  2. 2.Laboratoire de Spectrométrie ionique et Moléculaire, UMR CNRS 5579Université de LyonVilleurbanneFrance

Personalised recommendations