Analytical and Bioanalytical Chemistry

, Volume 400, Issue 10, pp 3383–3393 | Cite as

Quantifying mRNA levels across tissue sections with 2D-RT-qPCR

Original Paper


Measurement of mRNA levels across tissue samples facilitates an understanding of how genes function and what their roles are in disease. Quantifying low-abundance mRNA requires a workflow that preserves spatial information, isolates RNA, and performs reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). This is complex because these steps are typically performed in three separate platforms. In the present study, we describe two-dimensional RT-qPCR (2D-RT-qPCR), a method that quantifies RNA across tissues sections in a single integrated platform. The method uses the grid format of a multi-well plate to macrodissect tissue sections and preserve the spatial location of the RNA; this also eliminates the need for physical homogenization of the tissue. A new lysis and nucleic acid purification protocol is performed in the same multi-well plate, followed by RT-qPCR. The feasibility 2D-RT-qPCR was demonstrated on a variety of tissue types. Potential applications of the technology as a high-throughput tissue analysis platform are discussed.


Tissue lysis RNA purification Gene expression mapping Tissue section PCR 



We would like to thank Connie Rogers-Newcome at Adhesives Research for providing samples of ARseal 90697 sealing films.


This work was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Supplementary material

216_2011_5062_MOESM1_ESM.pdf (140 kb)
ESM 1 Primer sequences used in this study, specific protocol for duplex mRNA mapping (ChargeSwitch buffer), specific protocol for triplex mRNA mapping (ChargeSwitch or custom GITC buffer), example of 2D-RTPCR without DNase treatment, fluorescent data and determination of Cts, binding of DNA to adhesives film (PDF 140 kb)


  1. 1.
    Nuovo GJ (1994) PCR in-situ hybridization. Meth Mol Biol 33:223–241Google Scholar
  2. 2.
    Long AA, Komminoth P (1996) In situ PCR. Meth Mol Biol 71:141–161Google Scholar
  3. 3.
    O’Leary JJ, Chetty R, Graham AK, McGee JOD (1996) In situ PCR: pathologist’s dream or nightmare? J Pathol 178:11–20CrossRefGoogle Scholar
  4. 4.
    Dowsett M, Bartlett J, Ellis IO, Salter J, Hills M, Mallon E, Watters AD, Cooke T, Paish C, Wencyk PM, Pinder SE (2003) Correlation between immunohistochemistry (HercepTest) and fluorescence in situ hybridization (FISH) for HER-2 in 426 breast carcinomas from 37 centres. J Pathol 4:418–423CrossRefGoogle Scholar
  5. 5.
    Hubbard RA (2003) Human papillomavirus testing methods. Arch Pathol Lab Med 127:940–945Google Scholar
  6. 6.
    Arvey A, Hermann A, Hsia CC, Le E, Freund Y, McGinnis W (2010) Minimizing off-target signals in RNA fluorescent in situ hybridization. Nucleic Acids Res 38:e115CrossRefGoogle Scholar
  7. 7.
    Haase AT, Retzel EF, Staskus KA (1990) Amplification and detection of lentiviral DNA inside cells. Proc Natl Acad Sci USA 87:4971–4975CrossRefGoogle Scholar
  8. 8.
    Bicknell GR, Shaw JA, Pringle JH, Furness PN (1996) Amplification of specific mRNA from a single human renal glomerulus, with an approach to the separation of epithelial cell mRNA. J Pathol 180:188–193CrossRefGoogle Scholar
  9. 9.
    Heng B, Glenn WK, Ye Y, Tran B, Delprado W, Lutze-Mann L, Whitaker NJ, Lawson JS (2009) Human papilloma virus is associated with breast cancer. Br J Cancer 101:1345–1350CrossRefGoogle Scholar
  10. 10.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay to predict recurrence of Tamoxifen-treated, node-negative breast cancer. New Engl J Med 351:2817–2826CrossRefGoogle Scholar
  11. 11.
    Celotti F, Melcangi RC, Negri-Cesi P, Ballabio M, Martini L (1987) Differential distribution of the 5-alpha-reductase in the central nervous system of the rat and the mouse: are the white matter structures of the brain target tissue for testosterone action? J Steroid Biochem 26:125–129CrossRefGoogle Scholar
  12. 12.
    Singh RP, Brown VM, Chaudhari A, Khan AH, Ossadtchi A, Sforza DM, Meadors AK, Cherry SR, Leahy RM, Smith DJ (2003) High-resolution voxelation mapping of human and rodent brain gene expression. J Neurosci Methods 30:93–101CrossRefGoogle Scholar
  13. 13.
    Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang ZP, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274:998–1001CrossRefGoogle Scholar
  14. 14.
    Rodriguez-Canales J, Hanson JC, Tangrea MA, Erickson HS, Albert PS, Wallis BS, Richardson AM, Pinto PA, Linehan WM, Gillespie JW (2007) Identification of a unique epigenetic sub-microenvironment in prostate cancer. J Pathol 211:410–419CrossRefGoogle Scholar
  15. 15.
    Giannakis M, Stappenbeck TS, Mills JC, Leip DG, Lovett M, Clifton SW, Ippolito JE, Glasscock JI, Arumugam M, Brent MR, Gordon JI (2006) Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem 281:11292–11300CrossRefGoogle Scholar
  16. 16.
    Armani M, Rodriguez-Canales J, Gillespie J, Tangrea M, Erickson H, Emmert-Buck MR, Shapiro B, Smela E (2009) 2D-PCR: a method of mapping DNA in tissue sections. Lab Chip 9:3526–3534CrossRefGoogle Scholar
  17. 17.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386Google Scholar
  18. 18.
    Boom R, Sol CJA, Salimans MMM, Jansen CL, Wertheim-Van Dillen PME, Van Der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503Google Scholar
  19. 19.
    Thompson J, Gillespie D (1987) Molecular hybridization with RNA probes in concentrated solutions of guanidine thiocyanate. Anal Biochem 163:281–291CrossRefGoogle Scholar
  20. 20.
    Rådström P, Knutsson R, Wolffs P, Lövenklev M, Löfström C (2004) Pre-PCR processing: strategies to generate PCR-compatible samples. Mol Biotechnol 26:133–146CrossRefGoogle Scholar
  21. 21.
    Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39CrossRefGoogle Scholar
  22. 22.
    Klebe RJ, Grant GM, Grant AM, Garcia MA, Giambernardi TA, Taylor GP (1996) RT-PCR without RNA isolation. Biotechniques 21:1094–1100Google Scholar
  23. 23.
    Tian H, Hühmer AFR, Landers JP (2000) Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format. Anal Biochem 283:175–191CrossRefGoogle Scholar
  24. 24.
    Giordano BC, Ferrance J, Swedberg S, Hühmer AF, Landers JP (2001) Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Anal Biochem 291:124CrossRefGoogle Scholar
  25. 25.
    Kamme F, Zhu J, Luo L, Yu J, Tran D, Meurers B, Bittner A, Westlund K, Carlton S, Wan J (2004) Single-cell laser-capture microdissection and RNA amplification. Methods Mol Med 99:215–223Google Scholar
  26. 26.
    To MD, Done SJ, Redston M, Andrulis IL (1998) Analysis of mRNA from microdissected frozen tissue sections without RNA isolation. ASIP 153:47–51Google Scholar
  27. 27.
    Obata K, Segawa O, Yakabe M, Ishida Y, Kuroita T, Ikeda K, Kawakami B, Kawamura Y, Yohda M, Matsunaga T, Tajima H (2001) Development of a novel method for operating magnetic particles, Magtration Technology, and its use for automating nucleic acid purification. J Biosci Bioeng 91:500CrossRefGoogle Scholar
  28. 28.
    Zhong JF, Chen Y, Marcus JS, Scherer A, Quake SR, Taylor CR, Weiner LP (2008) A microfluidic processor for gene expression profiling of single human embryonic stem cells. Lab Chip 8:68–74CrossRefGoogle Scholar
  29. 29.
    Hong JW, Studer V, Hang G, Anderson WF, Quake SR (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nat Biotechnol 22:435CrossRefGoogle Scholar
  30. 30.
    Brenan CJH, Morrison T, Stone K, Heitner T, Katz A, Kanigan TS, Hess R, Kwon SJ, Jung HC, Pan JG (2002) Massively parallel microfluidics platform for storage and ultra-high-throughput screening. SPIE 4626:560CrossRefGoogle Scholar
  31. 31.
    Stanley KK, Szewczuk E (2005) Multiplexed tandem PCR: gene profiling from small amounts of RNA using SYBR green detection. Nucleic Acids Res 33:e180CrossRefGoogle Scholar
  32. 32.
    Li J, Smyth P, Cahill S, Denning K, Flavin R, Aherne S, Pirotta M, Guenther SM, O’Leary JJ, Sheils O (2008) Improved RNA quality and TaqMan® pre-amplification method (PreAmp) to enhance expression analysis from formalin fixed paraffin embedded (FFPE) materials. BMC Biotechnol 6:10CrossRefGoogle Scholar
  33. 33.
    Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC, Esteban JM, Baker JB (2004) Measurement of gene expression in archival paraffin-embedded tissues. Am J Pathol 164:35–42CrossRefGoogle Scholar
  34. 34.
    Spurgeon SL, Jones RC, Ramakrishnan R (2008) High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS ONE 3:e1662CrossRefGoogle Scholar
  35. 35.
    Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree S, George RD, Grogan T, James JJ, Maysuria M, Mitton JD, Oliveri P, Osborn JL, Peng T, Ratcliffe AL, Webster PJ, Davidson EH, Hood L, Dimitrov K (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26:317–325CrossRefGoogle Scholar
  36. 36.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270:467–470CrossRefGoogle Scholar
  37. 37.
    Singh RP, Desmond JS (2003) Genome scale mapping of brain gene expression. Biol Psychiatry 53:1069–1074CrossRefGoogle Scholar
  38. 38.
    Brown VM, Ossadtchi A, Khan AH, Cherry SR, Leahy RM, Smith DJ (2002) High-throughput imaging of brain gene expression. Genome Res 12:244–254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Michael Armani
    • 1
    • 3
  • Michael A. Tangrea
    • 3
  • Benjamin Shapiro
    • 1
  • Michael R. Emmert-Buck
    • 3
  • Elisabeth Smela
    • 2
  1. 1.Fischell Department of Bio-EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.Department of Mechanical EngineeringUniversity of MarylandCollege ParkUSA
  3. 3.Pathogenetics Unit, Laboratory of PathologyNational Cancer InstituteBethesdaUSA

Personalised recommendations