Analytical and Bioanalytical Chemistry

, Volume 401, Issue 1, pp 135–147 | Cite as

MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue

Original Paper

Abstract

The development of powerful analytical techniques for specific molecular characterization of neural cell types is of central relevance in neuroscience research for elucidating cellular functions in the central nervous system (CNS). This study examines the use of differential protein expression profiling of mammalian neural cells using direct analysis by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). MALDI-MS analysis is rapid, sensitive, robust, and specific for large biomolecules in complex matrices. Here, we describe a newly developed and straightforward methodology for direct characterization of rodent CNS glial cells using MALDI-MS-based intact cell mass spectrometry (ICMS). This molecular phenotyping approach enables monitoring of cell growth stages, (stem) cell differentiation, as well as probing cellular responses towards different stimulations. Glial cells were separated into pure astroglial, microglial, and oligodendroglial cell cultures. The intact cell suspensions were then analyzed directly by MALDI-TOF-MS, resulting in characteristic mass spectra profiles that discriminated glial cell types using principal component analysis. Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination of different cell types with molecular specificity.

Keywords

Intact cell mass spectrometry (ICMS) MALDI-TOF-MS Imaging mass spectrometry (IMS) Glial cells 

Notes

Acknowledgements

The Swedish Research Council Grants 342-2004-3944 (JB), 621-2008-3562 (JB), 522-2006-6416 (MA), 521-2007-5407 (MA), and 2006-4268 (ÅFS); The Royal Swedish Academy of Sciences (MA, JH); Gyllenstiernska Krapperupstiftelsen (ÅFS); Åhlenstiftelsen, Hjärnfonden (GW, postdoctoral); and the Swedish Chemical Society (JH) are gratefully acknowledged for financial support.

Supplementary material

216_2011_5043_MOESM1_ESM.pdf (307 kb)
ESM 1(PDF 306 kb)

References

  1. 1.
    Butt AM, Hamilton N, Hubbard P, Pugh M, Ibrahim M (2005) J Anat 207(6):695–706CrossRefGoogle Scholar
  2. 2.
    Freeman MR (2006) Curr Opin Neurobiol 16(1):119–125CrossRefGoogle Scholar
  3. 3.
    Perea G, Araque A (2005) J Neurosci 25(9):2192–2203CrossRefGoogle Scholar
  4. 4.
    Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Science 291(5504):657–661CrossRefGoogle Scholar
  5. 5.
    Tan L, Sun S, Duan S, Wang X (2005) J Huazhong Univ Sci Technolog Med Sci 25(5):484–487CrossRefGoogle Scholar
  6. 6.
    Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Cell 120(3):421–433CrossRefGoogle Scholar
  7. 7.
    Seifert G, Weber M, Schramm J, Steinhauser C (2003) Mol Cell Neurosci 22(2):248–258CrossRefGoogle Scholar
  8. 8.
    Bauer NG, Richter-Landsberg C, Ffrench-Constant C (2009) Glia 57(16):1691–1705CrossRefGoogle Scholar
  9. 9.
    Barres BA (2008) Neuron 60(3):430–440CrossRefGoogle Scholar
  10. 10.
    Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R (2001) Acta Neuropathol 101(3):249–255Google Scholar
  11. 11.
    Graeber MB, Streit WJ (2010) Acta Neuropathol 119(1):89–105CrossRefGoogle Scholar
  12. 12.
    Bradl M, Lassmann H (2009) Semin Immunopathol 31(4):455–465CrossRefGoogle Scholar
  13. 13.
    Miller DW, Cookson MR, Dickson DW (2004) Neuron Glia Biol 1(1):13–21CrossRefGoogle Scholar
  14. 14.
    Heneka MT (2009) Exp Neurol 217(2):237–239CrossRefGoogle Scholar
  15. 15.
    Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, Brown RH Jr, Julien JP, Goldstein LS, Cleveland DW (2003) Science 302(5642):113–117CrossRefGoogle Scholar
  16. 16.
    Boillee S, Vande Velde C, Cleveland DW (2006) Neuron 52(1):39–59CrossRefGoogle Scholar
  17. 17.
    Bradl M, Lassmann H (2010) Acta Neuropathol 119(1):37–53CrossRefGoogle Scholar
  18. 18.
    Jack C, Ruffini F, Bar-Or A, Antel JP (2005) J Neurosci Res 81(3):363–373CrossRefGoogle Scholar
  19. 19.
    Piaton G, Williams A, Seilhean D, Lubetzki C (2009) Prog Brain Res 175:453–464CrossRefGoogle Scholar
  20. 20.
    Chung YC, Ko HW, Bok E, Park ES, Huh SH, Nam JH, Jin BK (2010) BMB Rep 43(4):225–232Google Scholar
  21. 21.
    Eng LF, Ghirnikar RS (1994) Brain Pathol 4(3):229–237CrossRefGoogle Scholar
  22. 22.
    Sofroniew MV (2009) Trends Neurosci 32(12):638–647CrossRefGoogle Scholar
  23. 23.
    Iizuka A, Takayama K, Torashima T, Yamasaki M, Koyama C, Mitsumura K, Watanabe M, Hirai H (2009) Neurobiol Dis 35(3):457–465CrossRefGoogle Scholar
  24. 24.
    Jessen KR (2006) Novartis Found Symp 276:5–14, discussion 54–17, 275–281CrossRefGoogle Scholar
  25. 25.
    Milligan ED, Watkins LR (2009) Nat Rev Neurosci 10(1):23–36CrossRefGoogle Scholar
  26. 26.
    Fenselau C, Demirev PA (2001) Mass Spectrom Rev 20(4):157–171CrossRefGoogle Scholar
  27. 27.
    Marvin LF, Roberts MA, Fay LB (2003) Clin Chim Acta 337(1–2):11–21CrossRefGoogle Scholar
  28. 28.
    Bergquist J (1999) Chromatographia 49:S41–S48CrossRefGoogle Scholar
  29. 29.
    Buchanan CM, Malik AS, Cooper GJ (2007) Rapid Commun Mass Spectrom 21(21):3452–3458CrossRefGoogle Scholar
  30. 30.
    Kulkarni MJ, Vinod VP, Umasankar PK, Patole MS, Rao M (2006) Rapid Commun Mass Spectrom 20(18):2769–2772CrossRefGoogle Scholar
  31. 31.
    Zhang X, Scalf M, Berggren TW, Westphall MS, Smith LM (2006) J Am Soc Mass Spectrom 17(4):490–499CrossRefGoogle Scholar
  32. 32.
    Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Academic, San DiegoGoogle Scholar
  33. 33.
    McCarthy KD, de Vellis J (1980) J Cell Biol 85(3):890–902CrossRefGoogle Scholar
  34. 34.
    Jespersen S, Chaurand P, van Strien FJ, Spengler B, van der Greef J (1999) Anal Chem 71(3):660–666CrossRefGoogle Scholar
  35. 35.
    Mathur BN, Caprioli RM, Deutch AY (2009) Cereb Cortex 19(10):2372–2379CrossRefGoogle Scholar
  36. 36.
    Skold K, Svensson M, Nilsson A, Zhang X, Nydahl K, Caprioli RM, Svenningsson P, Andren PE (2006) J Proteome Res 5(2):262–269CrossRefGoogle Scholar
  37. 37.
    Keller BO, Suj J, Young AB, Whittal RM (2008) Anal Chim Acta 627(1):71–81CrossRefGoogle Scholar
  38. 38.
    Jimenez CR, Li KW, Dreisewerd K, Spijker S, Kingston R, Bateman RH, Burlingame AL, Smit AB, van Minnen J, Geraerts WP (1998) Biochemistry 37(7):2070–2076CrossRefGoogle Scholar
  39. 39.
    Kruse R, Sweedler JV (2003) J Am Soc Mass Spectrom 14(7):752–759CrossRefGoogle Scholar
  40. 40.
    Kutz KK, Schmidt JJ, Li L (2004) Anal Chem 76(19):5630–5640CrossRefGoogle Scholar
  41. 41.
    Li L, Garden RW, Romanova EV, Sweedler JV (1999) Anal Chem 71(24):5451–5458CrossRefGoogle Scholar
  42. 42.
    Rubakhin SS, Greenough WT, Sweedler JV (2003) Anal Chem 75(20):5374–5380CrossRefGoogle Scholar
  43. 43.
    Shimma S, Sugiura Y, Hayasaka T, Zaima N, Matsumoto M, Setou M (2008) Anal Chem 80(3):878–885CrossRefGoogle Scholar
  44. 44.
    Andersson M, Groseclose MR, Deutch AY, Caprioli RM (2008) Nat Meth 5(1):101–108CrossRefGoogle Scholar
  45. 45.
    Verhaert PD, Pinkse MW, Strupat K, Conaway MC (2010) Meth Mol Biol 656:433–449CrossRefGoogle Scholar
  46. 46.
    Pierson J, Svenningsson P, Caprioli RM, Andren PE (2005) J Proteome Res 4(2):223–226CrossRefGoogle Scholar
  47. 47.
    Stults JT (1995) Curr Opin Struct Biol 5(5):691–698CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Pharmaceutical Bioscience, Drug Safety and Toxicology and Department of Physical and Analytical Chemistry, Analytical ChemistryUppsala UniversityUppsalaSweden
  2. 2.Department of Genetics and Pathology, Cancer and Vascular BiologyUppsala UniversityUppsalaSweden
  3. 3.Department of Physical and Analytical Chemistry, Analytical ChemistryUppsala UniversityUppsalaSweden
  4. 4.Department of Pharmaceutical Bioscience, Drug Safety and ToxicologyUppsala UniversityUppsalaSweden
  5. 5.Institute of Medical Biology, Neurobiology ResearchUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations