Analytical and Bioanalytical Chemistry

, Volume 400, Issue 9, pp 3013–3024

Microbial genotoxicity bioreporters based on sulA activation

  • Alva Biran
  • Hadar Ben Yoav
  • Sharon Yagur-Kroll
  • Rami Pedahzur
  • Sebastian Buchinger
  • Yosi Shacham-Diamand
  • Georg Reifferscheid
  • Shimshon Belkin
Original Paper


A bacterial genotoxicity reporter strain was constructed in which the tightly controlled strong promoter of the Escherichia coli SOS response gene sulA was fused to the alkaline phosphatase-coding phoA reporter gene. The bioreporter responded in a dose-dependent manner to three model DNA-damaging agents—hydrogen peroxide, nalidixic acid (NA), and mitomycin C (MMC)—detected 30–60 min after exposure. Detection thresholds were 0.15 μM for MMC, 7.5 μM for nalidixic acid, and approximately 50 μM for hydrogen peroxide. A similar response to NA was observed when the bioreporter was integrated into a specially designed, portable electrochemical detection platform. Reporter sensitivity was further enhanced by single and double knockout mutations that enhanced cell membrane permeability (rfaE) and inhibited DNA damage repair mechanisms (umuD, uvrA). The rfaE mutants displayed a five- and tenfold increase in sensitivity to MMC and NA, respectively, while the uvrA mutation was advantageous in the detection of hydrogen peroxide. A similar sensitivity was displayed by the double rfaE/uvrA mutant when challenged with the pre-genotoxic agents 2-amino-3-methylimidazo[4,5-f]quinoline and 2-aminoanthracene following metabolic activation with an S9 mammalian liver fraction.


Genotoxicity detection Whole-cell biosensors Environmental monitoring Electrochemistry Bioluminescence Escherichia coli 


  1. 1.
    Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70(8):2281–2285CrossRefGoogle Scholar
  2. 2.
    McCann J, Spingarn NE, Kobori J, Ames BN (1975) Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. Proc Natl Acad Sci USA 72(3):979–983CrossRefGoogle Scholar
  3. 3.
    Biran A, Yagur-Kroll S, Pedahzur R, Buchinger S, Reifferscheid G, Ben-Yoav H, Shacham-Diamand Y, Belkin S (2010) Bacterial genotoxicity bioreporters. Microb Biotechnol 3(4):412–427CrossRefGoogle Scholar
  4. 4.
    Biran A, Pedahzur R, Buchinger S, Georg R, Belkin S (2009) Genetically engineered bacteria for genotoxicity assessment. In: Barcelo D, Hansen P-D (eds) Biosensors for environmental monitoring of aquatic systems. Springer, Berlin, pp 161–186CrossRefGoogle Scholar
  5. 5.
    Courcelle J, Hanawalt PC (2003) RecA-dependent recovery of arrested DNA replication fork. Annu Rev Genet 37:611–646CrossRefGoogle Scholar
  6. 6.
    Janion C (2001) Some aspects of the SOS response system—a critical survey. Acta Biochim Pol 48(3):599–610Google Scholar
  7. 7.
    Little JW (1991) Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73(4):411–421CrossRefGoogle Scholar
  8. 8.
    El Mzibri M, De Méo MP, Laget M, Guiraud H, Séree E, Barra Y, Duménil G (1996) The Salmonella sulA-test: a new in vitro system to detect genotoxins. Mutat Res 369(3–4):195–208Google Scholar
  9. 9.
    Quillardet P, Huisman O, D’Ari R, Hofnung M (1982) SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proc Natl Acad Sci USA 79(19):5971–5975CrossRefGoogle Scholar
  10. 10.
    Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC (2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158(1):41–64Google Scholar
  11. 11.
    Fernández de Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35(6):1560–1572CrossRefGoogle Scholar
  12. 12.
    Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis, vol 698. American Society of Microbiology Press, WashingtonGoogle Scholar
  13. 13.
    Quillardet P, Hofnung M (1993) The SOS chromotest: a review. Mutat Res 297(3):235–279Google Scholar
  14. 14.
    Reifferscheid G, Buchinger S (2009) Cell-based genotoxicity testing: genetically modified and genetically engineered bacteria in environmental genotoxicology. In: Belkin S, Gu MB (eds) Whole cell sensing system II. Advances in Biochemical Engineering Biotechnology, vol 118. Springer, Berlin, pp 85–112Google Scholar
  15. 15.
    Polyak B, Bassis E, Novodvorets A, Belkin S, Marks RS (2000) Optical fiber bioluminescent whole-cell microbial biosensors to genotoxicants. Water Sci Technol 42(1–2):305–311Google Scholar
  16. 16.
    Kuang Y, Biran I, Walt DR (2004) Living bacterial cell array for genotoxin monitoring. Anal Chem 76(10):2902–2909CrossRefGoogle Scholar
  17. 17.
    Tani H, Maehana K, Kamidate T (2004) Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network. Anal Chem 76(22):6693–6697CrossRefGoogle Scholar
  18. 18.
    Maehana K, Tani H, Kamidate T (2006) On-chip genotoxic bioassay based on bioluminescence reporter system using three-dimensional microfluidic network. Anal Chim Acta 560(1–2):24–29CrossRefGoogle Scholar
  19. 19.
    Horry H, Charrier T, Durand MJ, Vrignaud B, Picart P, Daniel P, Thouand G (2007) Technological conception of an optical biosensor with a disposable card for use with bioluminescent bacteria. Sens Acuators B Chem 122:527–534CrossRefGoogle Scholar
  20. 20.
    Badihi-Mossberg M, Buchner V, Rishpon J (2007) Electrochemical biosensors for pollutants in the environment. Electroanalysis 19(19–20):2015–2028CrossRefGoogle Scholar
  21. 21.
    Biran I, Babai R, Levcov K, Rishpon J, Ron EZ (2000) Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ Microbiol 2(3):285–290CrossRefGoogle Scholar
  22. 22.
    Biran I, Klimentiy L, Hengge-Aronis R, Ron EZ, Rishpon J (1999) On-line monitoring of gene expression. Microbiology 145(8):2129–2133CrossRefGoogle Scholar
  23. 23.
    Matsui N, Kaya T, Nagamine K, Yasukawa T, Shiku H, Matsue T (2006) Electrochemical mutagen screening using microbial chip. Biosens Bioelectron 21(7):1202–1209CrossRefGoogle Scholar
  24. 24.
    Neufeld T, Biran D, Popovtzer R, Erez T, Ron EZ, Rishpon J (2006) Genetically engineered pfabA pfabR bacteria: an electrochemical whole cell biosensor for detection of water toxicity. Anal Chem 78(14):4952–4956CrossRefGoogle Scholar
  25. 25.
    Popovtzer R, Neufeld T, Biran D, Ron EZ, Rishpon J, Shacham-Diamand Y (2005) Novel integrated electrochemical nano-biochip for toxicity detection in water. Nano Lett 5(6):1023–1027CrossRefGoogle Scholar
  26. 26.
    Ron EZ, Rishpon J (2010) Electrochemical cell-based sensors. In: Belkin S, Gu MB (eds) Whole cell sensing systems I. Advances in Biochemical Engineering/Biotechnology, vol 117. Springer, Berlin, pp 77–84Google Scholar
  27. 27.
    Ben-Yoav H, Biran A, Pedahzur R, Belkin S, Buchinger S, Reifferscheid G, Shacham-Diamand Y (2009) A whole cell electrochemical biosensor for water genotoxicity bio-detection. Electrochim Acta 54(25):6113–6118CrossRefGoogle Scholar
  28. 28.
    Torriani A (1968) Alkaline phosphatase of Escherichia coli. In: Grossman L, Moldave K (eds) Methods in enzymology, vol 12, part 2. Academic, New York, pp 212–218Google Scholar
  29. 29.
    Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462CrossRefGoogle Scholar
  30. 30.
    Drolet M, Phoenix P, Menzel R, Massé E, Liu LF, Crouch RJ (1995) Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc Nati Acad Sci USA 92(8):3526–3530CrossRefGoogle Scholar
  31. 31.
    Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008Google Scholar
  32. 32.
    Yagur-Kroll S, Bilic B, Belkin S (2010) Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation. Microb Biotechnol 3(3):300–310CrossRefGoogle Scholar
  33. 33.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645CrossRefGoogle Scholar
  34. 34.
    Austin EA, Graves JF, Hite LA, Parker CT, Schnaitman CA (1990) Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coli K-12: insertion mutagenesis of the rfa locus. J Bacteriol 172(9):5312–5325Google Scholar
  35. 35.
    Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158(1):9–14CrossRefGoogle Scholar
  36. 36.
    Manoil C (1991) Analysis of membrane protein topology using alkaline phosphatase and b-galactosidase gene fusions. In: Tartakoff AM (ed) Methods in cell biology, vol 34. Academic, New York, pp 61–75Google Scholar
  37. 37.
    Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for Enterobacteria. J Bacteriol 119(3):736–747Google Scholar
  38. 38.
    ISO13829 (2000) Water quality—determination of the genotoxicity of water and waste water using the umu-testGoogle Scholar
  39. 39.
    Baumstark-Khan C, Rode A, Rettberg P, Horneck G (2001) Application of the Lux-Fluoro test as bioassay for combined genotoxicity and cytotoxicity measurements by means of recombinant Salmonella typhimurium TA1535 cells. Anal Chim Acta 437(1):23–30CrossRefGoogle Scholar
  40. 40.
    Rosenkranz HS (1988) Chloramphenicol: magic bullet or double-edge sword? Mutat Res 196(1):1–16Google Scholar
  41. 41.
    Schnaitman CA, Klena JD (1993) Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Mol Biol Rev 57(3):655–682Google Scholar
  42. 42.
    Truglio JJ, Croteau DL, VanHouten B, Kisker C (2006) Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 106(2):233–252CrossRefGoogle Scholar
  43. 43.
    Tang M, Shen X, Frank EG, O’Donnell M, Woodgate R, Goodman MF (1999) UmuD’2C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci USA 96(16):8919–8924CrossRefGoogle Scholar
  44. 44.
    Snyderwine EG, Schut HAJ, Adamson RH, Thorgeirsson UP, Thorgeirsson SS (1992) Metabolic activation and genotoxicity of heterocyclic arylamines. Cancer Res 52:2099–2102Google Scholar
  45. 45.
    IARC (1993) Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines, and mycotoxins. Monographs of evaluation of carcinogenic risks to humans. IQ (2-Amino-3-methylimidazo[4,5-f]quinoline), vol 56. World Health Organization, France, p 165Google Scholar
  46. 46.
    McCann J, Choi E, Yamasaki E, Ames BN (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci USA 72(12):5135–5139CrossRefGoogle Scholar
  47. 47.
    Callahan MA, Slimak M, Gbel N, May I, Flower C, Freed R, Jennings P, DuPree R, Whitmore F, Maestri B, Holt B, Gould C (1979) Water-related environmental fate of 129 priority pollutants. EPA-44014-79-029a,b, NTISGoogle Scholar
  48. 48.
    Paitan Y, Biran I, Shechter N, Biran D, Rishpon J, Ron EZ (2004) Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Anal Biochem 335(2):175–183CrossRefGoogle Scholar
  49. 49.
    Oda Y, S-i N, Oki I, Kato T, Shinagawa H (1985) Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res 147(5):219–229Google Scholar
  50. 50.
    Jin UH, Chung TW, Lee YC, Ha SD, Kim CH (2001) Molecular cloning and functional expression of the rfaE gene required for lipopolysaccharide biosynthesis in Salmonella typhimurium. Glycoconjugate J 18(10):779–787CrossRefGoogle Scholar
  51. 51.
    Ames BN, Lee FD, Durston WE (1973) An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci USA 70(3):782–786CrossRefGoogle Scholar
  52. 52.
    Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Mol Biol Rev 55(1):123–142Google Scholar
  53. 53.
    Goerlich O, Quillardet P, Hofnung M (1989) Induction of the SOS response by hydrogen peroxide in various Escherichia coli mutants with altered protection against oxidative DNA damage. J Bacteriol 171(11):6141–6147Google Scholar
  54. 54.
    Quillardet P, Hofnung M (1985) The SOS chromotest, a colorimetric bacterial assay for genotoxins: procedures. Mutat Res 147(3):65–78Google Scholar
  55. 55.
    Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, Chua G, Sopko R, Brost RL, Ho C-H, Wang J, Ketela T, Brenner C, Brill JA, Fernandez GE, Lorenz TC, Payne GS, Ishihara S, Ohya Y, Andrews B, Hughes TR, Frey BJ, Graham TR, Andersen RJ, Boone C (2006) Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126(3):611–625CrossRefGoogle Scholar
  56. 56.
    Elad T, Benovich E, Magrisso S, Belkin S (2008) Toxicant identification by a luminescent bacterial bioreporter panel: application of pattern classification algorithms. Environ Sci & Techno 42(22):8486–8491CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alva Biran
    • 1
  • Hadar Ben Yoav
    • 2
  • Sharon Yagur-Kroll
    • 1
  • Rami Pedahzur
    • 1
  • Sebastian Buchinger
    • 3
  • Yosi Shacham-Diamand
    • 2
  • Georg Reifferscheid
    • 3
  • Shimshon Belkin
    • 1
  1. 1.Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of Physical Electronics, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
  3. 3.Division of Qualitative HydrologyGerman Federal Institute of Hydrology (BfG)KoblenzGermany

Personalised recommendations