Analytical and Bioanalytical Chemistry

, Volume 401, Issue 1, pp 17–27 | Cite as

MALDI tissue imaging: from biomarker discovery to clinical applications

  • Lisa H. Cazares
  • Dean A. Troyer
  • Binghe Wang
  • Richard R. Drake
  • O. John Semmes
Review

Abstract

Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is a powerful tool for the generation of multidimensional spatial expression maps of biomolecules directly from a tissue section. From a clinical proteomics perspective, this method correlates molecular detail to histopathological changes found in patient-derived tissues, enhancing the ability to identify candidates for disease biomarkers. The unbiased analysis and spatial mapping of a variety of molecules directly from clinical tissue sections can be achieved through this method. Conversely, targeted IMS, by the incorporation of laser-reactive molecular tags onto antibodies, aptamers, and other affinity molecules, enables analysis of specific molecules or a class of molecules. In addition to exploring tissue during biomarker discovery, the integration of MALDI-IMS methods into existing clinical pathology laboratory practices could prove beneficial to diagnostics. Querying tissue for the expression of specific biomarkers in a biopsy is a critical component in clinical decision-making and such markers are a major goal of translational research. An important challenge in cancer diagnostics will be to assay multiple parameters in a single slide when tissue quantities are limited. The development of multiplexed assays that maximize the yield of information from a small biopsy will help meet a critical challenge to current biomarker research. This review focuses on the use of MALDI-IMS in biomarker discovery and its potential as a clinical diagnostic tool with specific reference to our application of this technology to prostate cancer.

Keywords

Matrix-assisted laser desorption ionization tissue imaging Biomarker discovery Cancer 

References

  1. 1.
    Hillenkamp F et al (1991) Anal Chem 63(24):1193A–1203ACrossRefGoogle Scholar
  2. 2.
    Vestal ML (2009) J Mass Spectrom 44(3):303–317CrossRefGoogle Scholar
  3. 3.
    Cazares LH et al (2009) Clin Cancer Res 15(17):5541–5551CrossRefGoogle Scholar
  4. 4.
    Agar NY et al (2010) Methods Mol Biol 656:415–431CrossRefGoogle Scholar
  5. 5.
    Caldwell RL, Caprioli RM (2005) Mol Cell Proteomics 4(4):394–401CrossRefGoogle Scholar
  6. 6.
    Chaurand P et al (2005) Toxicol Pathol 33(1):92–101CrossRefGoogle Scholar
  7. 7.
    Franck J et al (2009) Anal Chem 81(19):8193–8202CrossRefGoogle Scholar
  8. 8.
    Vegvari A et al (2010) J Proteomics 73(6):1270–1278CrossRefGoogle Scholar
  9. 9.
    Chaurand P et al (2006) J Proteome Res 5(11):2889–2900CrossRefGoogle Scholar
  10. 10.
    Cornett DS et al (2006) Mol Cell Proteomics 5(10):1975–1983CrossRefGoogle Scholar
  11. 11.
    Fournier I, Wisztorski M, Salzet M (2008) Expert Rev Proteomics 5(3):413–424CrossRefGoogle Scholar
  12. 12.
    Franck J et al (2009) Mol Cell Proteomics 8(9):2023–2033CrossRefGoogle Scholar
  13. 13.
    Schwamborn K, Caprioli RM (2010) Nat Rev Cancer 10(9):639–646CrossRefGoogle Scholar
  14. 14.
    Yanagisawa K et al (2003) Lancet 362(9382):433–439CrossRefGoogle Scholar
  15. 15.
    Reyzer ML et al (2004) Cancer Res 64(24):9093–9100CrossRefGoogle Scholar
  16. 16.
    Schwartz SA et al (2005) Cancer Res 65(17):7674–7681Google Scholar
  17. 17.
    Gofrit ON et al (2007) J Urol 178(5):1925–1928CrossRefGoogle Scholar
  18. 18.
    Herring KD, Oppenheimer SR, Caprioli RM (2007) Semin Nephrol 27(6):597–608CrossRefGoogle Scholar
  19. 19.
    Oppenheimer SR et al (2010) J Proteome Res 9(5):2182–2190CrossRefGoogle Scholar
  20. 20.
    Hervouet E et al (2005) Carcinogenesis 26(3):531–539CrossRefGoogle Scholar
  21. 21.
    Simonnet H et al (2002) Carcinogenesis 23(5):759–768CrossRefGoogle Scholar
  22. 22.
    Simonnet H et al (2003) Carcinogenesis 24(9):1461–1466CrossRefGoogle Scholar
  23. 23.
    Finn WG (2007) J Mol Diagn 9(4):431–436CrossRefGoogle Scholar
  24. 24.
    Allemani C et al (2004) Br J Cancer 91(7):1263–1268CrossRefGoogle Scholar
  25. 25.
    Hadjisavvas A et al (2002) Ultrastruct Pathol 26(4):237–244CrossRefGoogle Scholar
  26. 26.
    Rauser S et al (2010) J Proteome Res 9(4):1854–1863CrossRefGoogle Scholar
  27. 27.
    Wilson KS et al (2002) Am J Pathol 161(4):1171–1185CrossRefGoogle Scholar
  28. 28.
    Chaurand P et al (2004) Am J Pathol 165(4):1057–1068CrossRefGoogle Scholar
  29. 29.
    Cornett DS et al (2007) Nat Methods 4(10):828–833CrossRefGoogle Scholar
  30. 30.
    Hsieh Y, Chen J, Korfmacher WA (2007) J Pharmacol Toxicol Methods 55(2):193–200CrossRefGoogle Scholar
  31. 31.
    Reyzer ML, Caprioli RM (2007) Curr Opin Chem Biol 11(1):29–35CrossRefGoogle Scholar
  32. 32.
    Hsieh Y et al (2006) Rapid Commun Mass Spectrom 20(6):965–972CrossRefGoogle Scholar
  33. 33.
    Cornett DS, Frappier SL, Caprioli RM (2008) Anal Chem 80(14):5648–5653CrossRefGoogle Scholar
  34. 34.
    Groseclose MR et al (2008) Proteomics 8(18):3715–3724CrossRefGoogle Scholar
  35. 35.
    Lemaire R et al (2007) J Proteome Res 6(4):1295–1305CrossRefGoogle Scholar
  36. 36.
    Morita Y et al (2009) Cancer Sci 101(1):267–273CrossRefGoogle Scholar
  37. 37.
    Ronci M et al (2008) Proteomics 8(18):3702–3714CrossRefGoogle Scholar
  38. 38.
    Chaurand P et al (2008) J Proteome Res 7(8):3543–3555CrossRefGoogle Scholar
  39. 39.
    Ergin B et al (2010) J Proteome Res 9(10):5188–5196CrossRefGoogle Scholar
  40. 40.
    Morales AR et al (2004) Am J Clin Pathol 121(4):528–536CrossRefGoogle Scholar
  41. 41.
    Vincek V et al (2003) Lab Invest 83(10):1427–1435CrossRefGoogle Scholar
  42. 42.
    Nadji M et al (2005) Appl Immunohistochem Mol Morphol 13(3):277–282CrossRefGoogle Scholar
  43. 43.
    Skrzydlewska E et al (2005) World J Gastroenterol 11(9):1251–1266Google Scholar
  44. 44.
    Chaurand P et al (2001) Proteomics 1(10):1320–1326CrossRefGoogle Scholar
  45. 45.
    Shimma S et al (2007) J Chromatogr B Anal Technol Biomed Life Sci 855:98–103Google Scholar
  46. 46.
    Shimma S et al (2008) Anal Chem 80(3):878–885CrossRefGoogle Scholar
  47. 47.
    Lemaire R et al (2007) J Proteome Res 6(11):4127–4134CrossRefGoogle Scholar
  48. 48.
    Bahr U et al (1997) J Mass Spectrom 32(10):1111–1116CrossRefGoogle Scholar
  49. 49.
    Westmacott G et al (2000) Rapid Commun Mass Spectrom 14(7):600–607CrossRefGoogle Scholar
  50. 50.
    van Remoortere A et al (2010) J Am Soc Mass Spectrom 21(11):1922–1929Google Scholar
  51. 51.
    Leinweber BD et al (2009) J Am Soc Mass Spectrom 20(1):89–95CrossRefGoogle Scholar
  52. 52.
    Groseclose MR et al (2007) J Mass Spectrom 42(2):254–262CrossRefGoogle Scholar
  53. 53.
    Yang Z et al (2007) Mol Endocrinol 21(2):343–358CrossRefGoogle Scholar
  54. 54.
    Simon R (2010) Methods Mol Biol 664:1–16CrossRefGoogle Scholar
  55. 55.
    Djidja MC et al (2010) Anal Bioanal Chem 397(2):587–601CrossRefGoogle Scholar
  56. 56.
    Rojo MG, Bueno G, Slodkowska J (2009) Folia Histochem Cytobiol 47(3):349–354CrossRefGoogle Scholar
  57. 57.
    Sweeney E et al (2008) Biochem Biophys Res Commun 374(2):181–186CrossRefGoogle Scholar
  58. 58.
    Thiery G et al (2007) Rapid Commun Mass Spectrom 21(6):823–829CrossRefGoogle Scholar
  59. 59.
    Thiery G et al (2008) Proteomics 8(18):3725–3734CrossRefGoogle Scholar
  60. 60.
    Lemaire R et al (2007) J Proteome Res 6(6):2057–2067CrossRefGoogle Scholar
  61. 61.
    Ustinov AV et al (2008) Org Biomol Chem 6(24):4593–4608CrossRefGoogle Scholar
  62. 62.
    Cheng Y et al (2010) Sci China Ser B Chem 53:3–20CrossRefGoogle Scholar
  63. 63.
    Fukuda M, Hindsgaul O (eds) (1994) Molecular glycobiology. Oxford University Press, New York, pp 1–52Google Scholar
  64. 64.
    Wang B, Boons G-J (eds) (2011) Carbohydrate recognition: biological problems, methods, and potential applications. Wiley, HobokenGoogle Scholar
  65. 65.
    Burroughs S, Wang B (2010) ChemBioChem 11(16):2245–2246. doi: 10.1002/cbic.201000462 CrossRefGoogle Scholar
  66. 66.
    Jin S et al (2010) Med Res Rev 30(2):171–257Google Scholar
  67. 67.
    Pal A, Bérubé M, Hall DG (2010) Angew Chem Int Ed 49:1492–1495Google Scholar
  68. 68.
    Yang W et al (2004) Chem Biol 11:439–448CrossRefGoogle Scholar
  69. 69.
    Yang W et al (2002) Bioorg Med Chem Lett 12:2175–2177CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Lisa H. Cazares
    • 1
    • 2
  • Dean A. Troyer
    • 2
  • Binghe Wang
    • 3
  • Richard R. Drake
    • 1
    • 2
  • O. John Semmes
    • 1
    • 2
  1. 1.Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkUSA
  2. 2.The Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkUSA
  3. 3.Department of ChemistryGeorgia State UniversityAtlantaUSA

Personalised recommendations