Analytical and Bioanalytical Chemistry

, Volume 400, Issue 10, pp 3367–3375 | Cite as

Quantitative determination of element concentrations in industrial oxide materials by laser-induced breakdown spectroscopy

  • B. Praher
  • R. Rössler
  • E. Arenholz
  • J. Heitz
  • J. D. Pedarnig
Original Paper

Abstract

Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) method is employed for quantitative determination of oxide concentrations in multi-component materials. Industrial oxide materials from steel industry are laser ablated in air, and the optical plasma emission is collected by spectrometers and gated detectors. The temperature and electron number density of laser-induced plasma are determined from measured LIBS spectra. Emission lines of aluminium (Al), calcium (Ca), iron (Fe), manganese (Mn), magnesium (Mg), silicon (Si), titanium (Ti), and chromium (Cr) of low self-absorption are selected, and the concentration of oxides CaO, Al2O3, MgO, SiO2, FeO, MnO, TiO2, and Cr2O3 is calculated by CF-LIBS analysis. For all sample materials investigated, we find good match of calculated concentration values (C CF) with nominal concentration values (C N). The relative error in oxide concentration, e r = |C CF − C N|/C N, decreases with increasing concentration and it is e r ≤ 100% for concentration C N ≥ 1 wt.%. The CF-LIBS results are stable against fluctuations of experimental parameters. The variation of laser pulse energy over a large range changes the error by less than 10% for major oxides (C N ≥ 10 wt.%). The results indicate that CF-LIBS method can be employed for fast and stable quantitative compositional analysis of multi-component materials.

Keywords

Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) Multi-element analysis Slag Industrial oxides 

Notes

Acknowledgements

We want to thank the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development for financial support (Christian Doppler Laboratory LAD).

References

  1. 1.
    Miziolek AW, Palleschi V, Schechter I (eds) (2006) Laser-induced breakdown spectroscopy (LIBS). Fundamentals and applications. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Singh JP, Thakur SN (eds) (2007) Laser induced breakdown spectroscopy. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Noll R, Sturm V, Aydin Ü, Eilers D, Gehlen C, Höhne M, Lamott A, Makowe J, Vrenegor J (2008) Laser-induced breakdown spectroscopy—from research to industry, new frontiers for process control. Spectrochim Acta B 63:1159–1166CrossRefGoogle Scholar
  5. 5.
    Cabalín LM, González A, Ruiz J, Laserna JJ (2010) Assessment of statistical uncertainty in the quantitative analysis of solid samples in motion using laser-induced breakdown spectroscopy. Spectrochim Acta B 65:680–687CrossRefGoogle Scholar
  6. 6.
    Laville S, Sabsabi M, Doucet FR (2007) Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy coupled with a linear multivariate calibration. Spectrochim Acta B 62:1557–1566CrossRefGoogle Scholar
  7. 7.
    Zorba V, Mao X, Russo RE (2010) Optical far- and near-field femtosecond laser ablation of Si for nanoscale chemical analysis. Anal Bioanal Chem 396:173–180CrossRefGoogle Scholar
  8. 8.
    Galiová M, Kaiser J, Novotný K, Ivanov M, Nývltová Fišáková M, Mancini L, Tromba G, Vaculovič T, Liška M, Kanický V (2010) Investigation of the osteitis deformans phases in snake vertebrae by double-pulse laser-induced breakdown spectroscopy. Anal Bioanal Chem 398:1095–1107CrossRefGoogle Scholar
  9. 9.
    Ciucci A, Corsi M, Palleschi V, Rastelli S, Salvetti A, Tognoni E (1999) New procedure for quantitative elemental analysis by laser induced plasma spectroscopy. Appl Spectrosc 53:960–964CrossRefGoogle Scholar
  10. 10.
    Tognoni E, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Mueller M, Panne U, Gornushkin I (2007) A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma. Spectrochim Acta B 62:1287–1302CrossRefGoogle Scholar
  11. 11.
    Burakov VS, Kiris VV, Naumenkov PA, Raikov SN (2004) Calibration-free laser spectral analysis of glasses and copper alloys. J Appl Spectrosc 71:740–746CrossRefGoogle Scholar
  12. 12.
    Pershin SM, Colao F, Spizzichino V (2006) Quantitative analysis of bronze samples by laser-induced breakdown spectroscopy (LIBS): a new approach, model, and experiment. Laser Physics 16:455–467CrossRefGoogle Scholar
  13. 13.
    Aguilera JA, Aragón C, Cristoforetti G, Tognoni E (2009) Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from a copper-based alloy laser-induced plasma. Spectrochim Acta B 64:685–689CrossRefGoogle Scholar
  14. 14.
    Herrera KK, Tognoni E, Gornushkin IB, Omenetto N, Smith BW, Winefordner JD (2009) Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions. J Anal At Spectrom 24:426–438CrossRefGoogle Scholar
  15. 15.
    Colao F, Fantoni R, Lazic V, Paolini A, Fabbri F, Ori GG, Marinangeli L, Baliva A (2004) Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues, Planet. Space Sci 52:117–123CrossRefGoogle Scholar
  16. 16.
    Sallé B, Lacour JL, Mauchien P, Fichet P, Maurice S, Manhes G (2006) Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere. Spectrochim Acta B 61:301–313CrossRefGoogle Scholar
  17. 17.
    De Giacomo A, Dell'Aglio M, De Pascale O, Longo S, Capitelli M (2007) Laser induced breakdown spectroscopy on meteorites. Spectrochim Acta B 62:1606–1611CrossRefGoogle Scholar
  18. 18.
    Singh VK, Singh V, Rai AK, Thakur SN, Rai PK, Singh JP (2008) Quantitative analysis of gallstones using laser-induced breakdown spectroscopy. Appl Opt 47:G38–G47CrossRefGoogle Scholar
  19. 19.
    Pandhija S, Rai AK (2009) In situ multielemental monitoring in coral skeleton by CF-LIBS. Appl Phys B 94:545–552CrossRefGoogle Scholar
  20. 20.
    Kraushaar M, Noll R, Schmitz H-U (2003) Slag analysis with laser-induced breakdown spectrometry. Appl Spectrosc 57:1282–1287CrossRefGoogle Scholar
  21. 21.
    Rosenwasser S, Asimellis G, Bromley B, Hazlett R, Martin J, Zigler A (2001) Development of a method for automated quantitative analysis of ores using LIBS. Spectrochim Acta B 56:707–714CrossRefGoogle Scholar
  22. 22.
    Motto-Ros V, Koujelev AS, Osinski GR, Dudelzak AE (2008) Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks. J Europ Opt Soc Rap Public 3:1–5Google Scholar
  23. 23.
    Praher B, Palleschi V, Viskup R, Heitz J, Pedarnig JD (2010) Calibration free laser-induced breakdown spectroscopy of oxide materials. Spectrochim Acta B 65:671–679CrossRefGoogle Scholar
  24. 24.
    Doujak G, Mertens R, Ramb W, Flock J, Geyer J, Lüngen S (2001) Slag analysis by laser-induced breakdown spectroscopy. stahl und eisen 121:53–58Google Scholar
  25. 25.
    NIST atomic spectra database. Available at: (http://physics.nist.gov/PhysRefData/ASD/).
  26. 26.
    KURUCZ atomic spectral line database. Available at: (http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html).
  27. 27.
    Capitelli M, Capitelli F, Eletskii A (2000) Non-equilibrium and equilibrium problems in laser-induced plasmas. Spectrochim Acta B 55:559–574CrossRefGoogle Scholar
  28. 28.
    Fujimoto T, McWhirter RWP (1990) Validity criteria for local thermodynamic equilibrium in plasma spectroscopy. Physical Review A 42:6588–6601CrossRefGoogle Scholar
  29. 29.
    Potts PJ, Thompson M, Wilson S (2002) G-Probe-1—an international proficiency test for microprobe laboratories—report on round 1: February 2002 (TB-1 Basaltic Glass). Geostandards Newsletter 26:197–235CrossRefGoogle Scholar
  30. 30.
    Bäuerle D (2000) Laser processing and chemistry, 3rd edn. Springer, BerlinGoogle Scholar
  31. 31.
    Gornushkin IB, Shabanov SV, Merk S, Tognoni E, Panne U (2010) Effects of non-uniformity of laser induced plasma on plasma temperature and concentrations determined by the Boltzmann plot method: implications from plasma modeling. J Anal At Spectrom 25:1643–1653CrossRefGoogle Scholar
  32. 32.
    Bertolini A, Carelli G, Francesconi F, Francesconi M, Marchesini L, Marsili P, Sorrentino F, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A (2006) Modì: a new mobile instrument for in situ double-pulse LIBS analysis. Anal Bioanal Chem 385:240–247CrossRefGoogle Scholar
  33. 33.
    Ctvrtníkova T, Cabalín LM, Laserna J, Kanický V (2008) Comparison of double-pulse and single-pulse laser-induced breakdown spectroscopy techniques in the analysis of powdered samples of silicate raw materials for the brick-and-tile industry. Spectrochim Acta B 63:42–50CrossRefGoogle Scholar
  34. 34.
    Gehlen CD, Roth P, Aydin Ü, Wiens E, Noll R (2008) Time-resolved investigations of laser-induced plasmas generated by nanosecond bursts in the millijoule burst energy regime. Spectrochim Acta B 63:1072–1076CrossRefGoogle Scholar
  35. 35.
    St-Onge L, Sabsabi M, Cielo P (1998) Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode. Spectrochim Acta B 53:407–415CrossRefGoogle Scholar
  36. 36.
    Babushok VI, DeLucia FC Jr, Gottfried JL, Munson CA, Miziolek AW (2006) Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement. Spectrochim Acta B 61:999–1014CrossRefGoogle Scholar
  37. 37.
    Viskup R, Praher B, Linsmeyer T, Scherndl H, Pedarnig JD, Heitz J (2010) Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers. Spectrochim Acta B 65:935–942CrossRefGoogle Scholar
  38. 38.
    Windom BC, Hahn DW (2009) Laser ablation—laser induced breakdown spectroscopy (LA-LIBS): a means for overcoming matrix effects leading to improved analyte response. J Anal At Spectrom 24:1665–1675CrossRefGoogle Scholar
  39. 39.
    Kexue LI, Zhou W, Shen Q, Shao J, Qian H (2010) Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge. Spectrochim Acta B 65:420–424CrossRefGoogle Scholar
  40. 40.
    Chen Y, Zhang Q, Li G, Li R, Zhou J (2010) Laser ignition assisted spark-induced breakdown spectroscopy for the ultra-sensitive detection of trace mercury ions in aqueous solutions. J Anal At Spectrom 25:1969–1973CrossRefGoogle Scholar
  41. 41.
    Deng W, Liu Y, Wei G, Li X, Tu X, Xie L, Zhang H, Sun W (2010) High-precision analysis of Sr/Ca and Mg/Ca ratios in corals by laser ablation inductively coupled plasma optical emission spectrometry. J Anal At Spectrom 25:84–87CrossRefGoogle Scholar
  42. 42.
    Bian QZ, Koch J, Lindner H, Berndt H, Hergenröder R, Niemax K (2005) Non-matrix matched calibration using near-IR femtosecond laser ablation inductively coupled plasma optical emission spectrometry. J Anal At Spectrom 20:736–740CrossRefGoogle Scholar
  43. 43.
    Pedarnig JD, Heitz J, Ionita ER, Dinescu G, Praher B, Viskup R (2011) Combination of RF–plasma jet and laser-induced plasma for breakdown spectroscopy analysis of complex materials. Appl Surf Sci 257:5452–5455CrossRefGoogle Scholar
  44. 44.
    Ikeda Y, Moon A, Kaneko M (2010) Development of microwave-enhanced spark-induced breakdown spectroscopy. Appl Opt 49:C95–C100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • B. Praher
    • 1
  • R. Rössler
    • 2
  • E. Arenholz
    • 2
  • J. Heitz
    • 1
  • J. D. Pedarnig
    • 1
  1. 1.Christian Doppler Laboratory for Laser-Assisted DiagnosticsInstitute of Applied Physics, Johannes Kepler University LinzLinzAustria
  2. 2.voestalpine Stahl GmbHLinzAustria

Personalised recommendations