Analytical and Bioanalytical Chemistry

, Volume 401, Issue 1, pp 65–73 | Cite as

Mass spectrometry imaging with high resolution in mass and space (HR2 MSI) for reliable investigation of drug compound distributions on the cellular level

  • Andreas Römpp
  • Sabine Guenther
  • Zoltan Takats
  • Bernhard SpenglerEmail author
Paper in Forefront


Mass spectrometry (MS) imaging is a versatile method to analyze the spatial distribution of analytes in tissue sections. It provides unique features for the analysis of drug compounds in pharmacokinetic studies such as label-free detection and differentiation of compounds and metabolites. We have recently introduced a MS imaging method that combines high mass resolution and high spatial resolution in a single experiment, hence termed HR2 MS imaging. In the present study, we applied this method to analyze the spatial distribution of the anti-cancer drugs imatinib and ifosfamide in individual mouse organs. The whole kidney of an animal dosed with imatinib was measured at 35 μm spatial resolution. Imatinib showed a well-defined distribution in the outer stripe of the outer medulla. This area was analyzed in more detail at 10 μm step size, which constitutes a tenfold increase in effective spatial resolution compared to previous studies of drug compounds. In parallel, ion images of phospholipids and heme were used to characterize the histological features of the tissue section and showed excellent agreement with histological staining of the kidney after MS imaging. Ifosfamide was analyzed in mouse kidney at 20 μm step size and was found to be accumulated in the inner medulla region. The identity of imatinib and ifosfamide was confirmed by on-tissue MS/MS measurements. All measurements including mass spectra from 10 μm pixels featured accurate mass (≤2 ppm root mean square) and mass resolving power of R = 30,000. Selected ion images were generated with a bin size of ∆m/z = 0.01 ensuring highly specific information. The ability of the method to cover larger areas was demonstrated by imaging a compound in the intestinal tract of a rat whole-body tissue section at 200 μm step size. The described method represents a major improvement in terms of spatial resolution and specificity for the analysis of drug compounds in tissue sections.


Mass spectrometry imaging of drug compounds in biological tissue acquired with high resolution in space and mass reveals deep information on biochemical and biomedical mechanisms


Mass spectrometry imaging Drug compounds Accurate mass High-resolution mass spectrometry 



Financial support by the State of Hesse (LOEWE Research Focus “Ambiprobe”), by the European Research Council Starting Grant 2008 (Z. T.), and by the European Union (STREP project LSHG-CT-2005-518194) is gratefully acknowledged. We thank Lilli Walz for H&E staining of mouse kidney sections. We also thank Julia Kokesch for help with data analysis. This publication represents a component of the doctoral (Dr. rer. nat.) thesis of S.G. at the Faculty of Biology and Chemistry, Justus Liebig University Giessen, Germany.

Supplementary material

216_2011_4990_MOESM1_ESM.pdf (4 mb)
ESM 1 (PDF 4070 kb)


  1. 1.
    Chughtai K, Heeren RMA (2010) Mass spectrometric imaging for biomedical tissue analysis. Chem Rev 110(5):3237–3277CrossRefGoogle Scholar
  2. 2.
    McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26(4):606–643. doi: 10.1002/mas.20124 CrossRefGoogle Scholar
  3. 3.
    Spengler B, Hubert M (2002) Scanning microprobe matrix-assisted laser desorption ionization (SMALDI) mass spectrometry: instrumentation for sub-micrometer resolved LDI and MALDI surface analysis. J Am Soc Mass Spectrom 13(6):735–748CrossRefGoogle Scholar
  4. 4.
    Spengler B, Hubert M, Kaufmann R (1994) MALDI ion imaging and biological ion imaging with a new scanning UV-laser microprobe. In: Proceedings of the 42nd Annual Conference on Mass Spectrometry and Allied Topics, Chicago, Illinois, 29 May–3 June, p 1041Google Scholar
  5. 5.
    Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM (2001) Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 7(4):493–496CrossRefGoogle Scholar
  6. 6.
    Jackson SN, Wang HYJ, Woods AS (2005) In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom 16(12):2052–2056. doi: 10.1016/j.jasms.2005.08.014 CrossRefGoogle Scholar
  7. 7.
    Chen RB, Jiang XY, Conaway MCP, Mohtashemi I, Hui LM, Viner R, Li LJ (2010) Mass spectral analysis of neuropeptide expression and distribution in the nervous system of the lobster Homarus americanus. J Proteome Res 9(2):818–832. doi: 10.1021/pr900736t CrossRefGoogle Scholar
  8. 8.
    Stoeckli M, Staab D, Staufenbiel M, Wiederhold KH, Signor L (2002) Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry. Anal Biochem 311(1):33–39CrossRefGoogle Scholar
  9. 9.
    Reyzer ML, Caprioli RM (2007) MALDI-MS-based imaging of small molecules and proteins in tissues. Curr Opin Chem Biol 11(1):29–35. doi: 10.1016/j.cbpa.2006.11.035 CrossRefGoogle Scholar
  10. 10.
    Reyzer ML, Hsieh YS, Ng K, Korfmacher WA, Caprioli RM (2003) Direct analysis of drug candidates in tissue by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 38(10):1081–1092. doi: 10.1002/jms.525 CrossRefGoogle Scholar
  11. 11.
    Stoeckli M, Staab D, Schweitzer A (2007) Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections. Int J Mass Spectrom 260(2–3):195–202. doi: 10.1016/j.ijms.2006.10.007 Google Scholar
  12. 12.
    Solon EG, Schweitzer A, Stoeckli M, Prideaux B (2010) Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J 12(1):11–26. doi: 10.1208/s12248-009-9158-4 CrossRefGoogle Scholar
  13. 13.
    Khatib-Shahidi S, Andersson M, Herman JL, Gillespie TA, Caprioli RM (2006) Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 78(18):6448–6456. doi: 10.1021/ac060788p CrossRefGoogle Scholar
  14. 14.
    Cornett DS, Frappier SL, Caprioli RM (2008) MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal Chem 80(14):5648–5653. doi: 10.1021/ac800617s CrossRefGoogle Scholar
  15. 15.
    Acquadro E, Cabella C, Ghiani S, Miragoli L, Bucci EM, Corpillo D (2009) Matrix-assisted laser desorption ionization imaging mass spectrometry detection of a magnetic resonance imaging contrast agent in mouse liver. Anal Chem 81(7):2779–2784. doi: 10.1021/ac900038y CrossRefGoogle Scholar
  16. 16.
    Trim PJ, Henson CM, Avery JL, McEwen A, Snel MF, Claude E, Marshall PS, West A, Princivalle AP, Clench MR (2008) Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of Vinblastine in whole body tissue sections. Anal Chem 80(22):8628–8634. doi: 10.1021/ac8015467 CrossRefGoogle Scholar
  17. 17.
    Hopfgartner G, Varesio E, Stoeckli M (2009) Matrix-assisted laser desorption/ionization mass spectrometric imaging of complete rat sections using a triple quadrupole linear ion trap. Rapid Commun Mass Spectrom 23(6):733–736. doi: 10.1002/rcm.3934 CrossRefGoogle Scholar
  18. 18.
    Drexler DM, Garrett TJ, Cantone JL, Diters RW, Mitroka JG, Prieto Conaway MC, Adams SP, Yost RA, Sanders M (2007) Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues. J Pharmacol Toxicol Meth 55(3):279–288. doi: 10.1016/j.vascn.2006.11.004 CrossRefGoogle Scholar
  19. 19.
    Marshall AG, Hendrickson CL (2002) Fourier transform ion cyclotron resonance detection: principles and experimental configurations. Int J Mass Spectrom 215(1–3):59–75Google Scholar
  20. 20.
    Römpp A, Taban IM, Mihalca R, Duursma MC, Mize TH, McDonnell LA, Heeren RMA (2005) Examples of Fourier transform ion cyclotron resonance mass spectrometry developments: from ion physics to remote access biochemical mass spectrometry. Eur J Mass Spectrom 11(5):443–456CrossRefGoogle Scholar
  21. 21.
    Scigelova M, Makarov A (2006) Orbitrap mass analyzer—overview and applications in proteomics. Proteomics 6(1):16–21. doi: 10.1002/pmic.200600528 CrossRefGoogle Scholar
  22. 22.
    Landgraf RR, Conaway MCP, Garrett TJ, Stacpoole PW, Yost RA (2009) Imaging of lipids in spinal cord using intermediate pressure matrix-assisted laser desorption-linear ion trap/Orbitrap MS. Anal Chem 81(20):8488–8495. doi: 10.1021/ac901387u CrossRefGoogle Scholar
  23. 23.
    Römpp A, Guenther S, Schober Y, Schulz O, Takats Z, Kummer W, Spengler B (2010) Histology by mass spectrometry: label-free tissue characterization obtained from high-accuracy bioanalytical imaging. Angew Chem Int Ed 49(22):3834–3838CrossRefGoogle Scholar
  24. 24.
    Guenther S, Römpp A, Kummer W, Spengler B (2011) AP-MALDI imaging of neuropeptides in mouse pituitary gland with 5 μm spatial resolution and high mass accuracy. Int J Mass Spectrom. doi: 10.1016/j.ijms.2010.11.011 Google Scholar
  25. 25.
    Bouschen W, Schulz O, Eikel D, Spengler B (2010) Matrix vapor deposition/recrystallization and dedicated spray preparation for high-resolution scanning microprobe matrix-assisted laser desorption/ionization imaging mass spectrometry (SMALDI-MS) of tissue and single cells. Rapid Commun Mass Spectrom 24(3):355–364CrossRefGoogle Scholar
  26. 26.
    Koestler M, Kirsch D, Hester A, Leisner A, Guenther S, Spengler B (2008) A high-resolution scanning microprobe matrix-assisted laser desorption/ionization ion source for imaging analysis on an ion trap/Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun Mass Spectrom 22(20):3275–3285. doi: 10.1002/rcm.3733 CrossRefGoogle Scholar
  27. 27.
    Guenther S, Koestler M, Schulz O, Spengler B (2010) Laser spot size and laser power dependence of ion formation in high resolution MALDI imaging. Int J Mass Spectrom 294(1):7–15. doi: 10.1016/j.ijms.2010.03.014 CrossRefGoogle Scholar
  28. 28.
    Weinman EJ, Lakkis J, Akom M, Wali RK, Drachenberg CB, Coleman RA, Wade JB (2002) Expression of NHERF-1, NHERF-2, PDGFR-alpha, and PDGFR-beta in normal human kidneys and in renal transplant rejection. Pathobiology 70(6):314–323. doi: 10.1159/000071271 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andreas Römpp
    • 1
  • Sabine Guenther
    • 1
  • Zoltan Takats
    • 1
  • Bernhard Spengler
    • 1
    Email author
  1. 1.Institute of Inorganic and Analytical ChemistryJustus Liebig UniversityGiessenGermany

Personalised recommendations