Analytical and Bioanalytical Chemistry

, Volume 401, Issue 3, pp 809–816

Imaging the cellular uptake of tiopronin-modified gold nanoparticles

  • Xiaoqing Cai
  • Hsiang-Hsin Chen
  • Cheng-Liang Wang
  • Shin-Tai Chen
  • Sheng-Feng Lai
  • Chia-Chi Chien
  • Yi-Yun Chen
  • Ivan M. Kempson
  • Yeukuang Hwu
  • C. S. Yang
  • G. Margaritondo
Original Paper

Abstract

Well-dispersed gold nanoparticles (NP) coated with tiopronin were synthesized by X-ray irradiation without reducing agents. High-resolution transmission electron microscopy shows that the average core diameters of the NPs can be systematically controlled by adjusting the tiopronin to Au mole ratio in the reaction. Three methods were used to study the NP uptake by cells: quantitative measurements by inductively coupled plasma mass spectrometry, direct imaging with high lateral resolution transmission electron microscopy and transmission X-ray microscopy. The results confirmed that the NP internalization mostly occurred via endocytosis and concerned the cytoplasm. The particles, in spite of their small sizes, were not found to arrive inside the cell nuclei. The synthesis without reducing agents and solvents increased the biocompatibility as required for potential applications in analysis and biomedicine in general.

Figure

A high resolution Transmission X-ray microscope image (A) captured the internalization and aggregation of tiopronin-coated Au nanoparticles in the vicinity of cell nucleus, the light dark area, of an EMG-6 cell. (B) One of the corresponding pictures produced by three-dimensional tomography reconstruction. The complete movie sequence of such pictures provides three-dimensional visual confirmation of the internalization and location of tiopronin-coated Au nanoparticles.

Keywords

Gold nanoparticles X-ray synthesis Cellular uptake Transmission X-ray microscopy 

Supplementary material

216_2011_4986_MOESM1_ESM.mpg (7.6 mb)
ESM 1(MPG 7801 kb)

References

  1. 1.
    Daniel MC, Astruc D (2003) Chem Rev 104:293–346CrossRefGoogle Scholar
  2. 2.
    Dahl JA, Maddux BLS, Hutchison JE (2007) Chem Rev 107:2228–2269CrossRefGoogle Scholar
  3. 3.
    Funston AM, Mulvaney P, Murray RW (2009) Langmuir 25:13840–13851CrossRefGoogle Scholar
  4. 4.
    Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely CJ (1995) Chem Commun 16:1655–1656Google Scholar
  5. 5.
    Brust M, Schiffrin DJ, Bethell D, Kiely CJ (1995) Adv Mater 7:795–797CrossRefGoogle Scholar
  6. 6.
    Brown LO, Hutchison JE (1997) J Am Chem Soc 119:12384–12385CrossRefGoogle Scholar
  7. 7.
    Chen S, Murray RW (1998) Langmuir 15:682–689CrossRefGoogle Scholar
  8. 8.
    Templeton AC, Chen S, Gross SM, Murray RW (1998) Langmuir 15:66–76CrossRefGoogle Scholar
  9. 9.
    Schaaff TG, Whetten RL (2000) J Phys Chem B 104:2630–2641CrossRefGoogle Scholar
  10. 10.
    Pasquato L, Pengo P, Scrimin P (2004) J Mater Chem 14:3481–3487CrossRefGoogle Scholar
  11. 11.
    Price RC, Whetten RL (2005) J Am Chem Soc 127:13750–13751CrossRefGoogle Scholar
  12. 12.
    Bertino MF, Sun ZM, Zhang R, Wang LS (2006) J Phys Chem B 110:21416–21418CrossRefGoogle Scholar
  13. 13.
    Jin R (2008) Agew Chem Int Ed 47:6750–6753CrossRefGoogle Scholar
  14. 14.
    Wu Z, Suhan J, Jin R (2009) J Mater Chem 19:622–626CrossRefGoogle Scholar
  15. 15.
    Zhu Y, Qian H, Zhu M, Jin R (2010) Adv Mater 22:1915–1920Google Scholar
  16. 16.
    Tang Z, Xu B, Wu B, Germann MW (2010) J Am Chem Soc 132:3367–3374CrossRefGoogle Scholar
  17. 17.
    Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) J Am Chem Soc 130:3754–3755CrossRefGoogle Scholar
  18. 18.
    Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Science 318:430–433CrossRefGoogle Scholar
  19. 19.
    Seino S, Kinoshita T, Nakagawa T, Kojima T, Taniguci R, Okuda S, Yamamoto T (2008) J Nanopart Res 10:1071–1076CrossRefGoogle Scholar
  20. 20.
    Ma Q, Moldovan N, Mancini DC, Rosenberg RA (2000) Appl Phys Lett 76:2014–2016CrossRefGoogle Scholar
  21. 21.
    Karadas F, Ertas G, Ozkaraoglu E, Suzer S (2004) Langmuir 21:437–442CrossRefGoogle Scholar
  22. 22.
    Cai XQ, Wang CL, Chen HH, Chie CC, Lai SF, Chen YY, Hua TE, Kempson IM, Hwu Y, Yang CS, Margaritondo G (2010) Nanotechnology 21:335604CrossRefGoogle Scholar
  23. 23.
    Wang CH, Liu CR, Wang CL, Hua TE, Lee KH, Hwu YK (2008) J Phys D Appl Phys 41:195301–195308CrossRefGoogle Scholar
  24. 24.
    Wang CH, Hua TE, Chien CC, Yu YL, Yang TY, Liu CJ, Leng WH, Hwu YK, Yang YC, Kim CC, Je JH, Chen CH, Lin HM, Margaritondo G (2007) Mater Chem Phys 106:323–329CrossRefGoogle Scholar
  25. 25.
    Wang CL, Hso BJ, Lai SF, Chen WC, Chen HH, Chen YY, Chien CC, Cai XQ, Kempson IM, Hwu Y, Margaritondo G (2011) Nanotechnology 22:065605CrossRefGoogle Scholar
  26. 26.
    Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Small 5:701–708CrossRefGoogle Scholar
  27. 27.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Nano Lett 6:662–668CrossRefGoogle Scholar
  28. 28.
    Chithrani BD, Chan WCW (2007) Nano Lett 7:1542–1550CrossRefGoogle Scholar
  29. 29.
    Nativo P, Prior IA, Brust M (2008) ACS Nano 2:1639–1644CrossRefGoogle Scholar
  30. 30.
    Chu YS, Yi JM, De Carlo F, Shen Q, Lee WK, Wu HJ, Wang CL, Wang JY, Liu CJ, Wang CH, Wu SR, Chien CC, Hwu YK, Tkachuk A, Yun W, Feser M, Liang KS, Je JH, Margaritondo G (2008) Appl Phys Lett 92:103119–103123CrossRefGoogle Scholar
  31. 31.
    Chen YT, Chen TY, Yi J, Chu YS, Lee WK, Wang CL, Kempson IM, Hwu Y, Gajdosik V, Margaritondo G (2011) Opt Lett 36:1269–1271CrossRefGoogle Scholar
  32. 32.
    Syme CD, Sirimuthu NM, Faley SL, Cooper JM (2010) Chem Commun 46:7921–7923CrossRefGoogle Scholar
  33. 33.
    Sirimuthu NMS, Syme CD, Cooper JM (2010) Anal Chem 82:7369–7373CrossRefGoogle Scholar
  34. 34.
    Le Gros MA, McDermott G, Larabell CA (2005) Curr Opin Struck Biol 15:593–600CrossRefGoogle Scholar
  35. 35.
    Larabell CA, Le Gros MA (2004) Mol Biol Cell 15:957–962CrossRefGoogle Scholar
  36. 36.
    Hsu PC, Wang CH, Yang TY, Hwu YK, Lin CS, Chen CH, Chang LW, Seol SK, Je JH, Margaritondo G (2007) J Vac Sci Technol A 25:615–620CrossRefGoogle Scholar
  37. 37.
    Kim YG, Oh SK, Crooks RM (2003) Chem Mater 16:167–172CrossRefGoogle Scholar
  38. 38.
    Liu CJ, Wang CH, Chen ST, Chen HH, Leng WH, Chien CC, Wang CL, Kempson IM, Hwu Y, Lai TC, Hsiao M, Yang CS, Chen YJ, Margaritondo G (2010) Phys Med Biol 55:930–945Google Scholar
  39. 39.
    Aft RL, Lewis JS, Zhang F, Kim J, Welch MJ (2003) Cancer Res 63:5496–5504Google Scholar
  40. 40.
    Huang FK, Chen WC, Lai SF, Liu CJ, Wang CL, Wang CH, Chen HH, Hua TE, Chen YY, Wu MK, Hwu Y, Yang CS, Margaritondo G (2010) Phys Med Biol 55:469–482CrossRefGoogle Scholar
  41. 41.
    Chen HH, Chien CC, Petibois C, Wang CL, Chu YS, Lai SF, Hua TE, Chen YY, Cai XQ, Hwu Y, Margaritondo G (2011) J Nanobiotechnology 9(1):14Google Scholar
  42. 42.
    Wang CH, Liu CJ, Chien CC, Chen HT, Hua TE, Leng WH, Chen HH, Kempson IM, Hwu Y, Hsiao M, Lai TC, Wang JL, Yang CS, Lin HM, Chen YJ, Margaritondo G (2011) Mater Chem Phys 126:352–356CrossRefGoogle Scholar
  43. 43.
    Wörle-Knirsch JM, Pulskamp K, Krug HF (2006) Nano Lett 6:1261–1268CrossRefGoogle Scholar
  44. 44.
    Yen HJ, Hsu SH, Tsai CL (2009) Small 5:1553–1561CrossRefGoogle Scholar
  45. 45.
    Castaneda L, Valle J, Yang N, Pluskat S, Slowinska K (2008) Biomacromolecules 9:3383–3388CrossRefGoogle Scholar
  46. 46.
    De La Fuente JM, Berry CC, Riehle MO, Curtis AS (2006) Langmuir 22:3286–3293CrossRefGoogle Scholar
  47. 47.
    Mobius W, van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HF, Slot JW, Geuze HJ (2003) Traffic 4:222–231CrossRefGoogle Scholar
  48. 48.
    Pelkmans L, Burli T, Zerial M, Helenius A (2004) Cell 118:767–780CrossRefGoogle Scholar
  49. 49.
    Tkachenko AG, Xie H, Liu Y, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL (2004) Bioconjug Chem 15:482–490CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Xiaoqing Cai
    • 1
  • Hsiang-Hsin Chen
    • 1
  • Cheng-Liang Wang
    • 1
  • Shin-Tai Chen
    • 1
  • Sheng-Feng Lai
    • 1
  • Chia-Chi Chien
    • 1
    • 2
  • Yi-Yun Chen
    • 1
  • Ivan M. Kempson
    • 1
  • Yeukuang Hwu
    • 1
    • 2
    • 3
  • C. S. Yang
    • 4
  • G. Margaritondo
    • 5
  1. 1.Institute of PhysicsAcademia SinicaTaipeiTaiwan
  2. 2.Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchuTaiwan
  3. 3.Institute of Optoelectronic SciencesNational Taiwan Ocean UniversityKeelungTaiwan
  4. 4.Center for NanomedicineNational Health Research InstitutesMiaoliTaiwan
  5. 5.Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations