Advertisement

Analytical and Bioanalytical Chemistry

, Volume 400, Issue 6, pp 1705–1716 | Cite as

Droplet microfluidics for the study of artificial cells

  • Masahiro Takinoue
  • Shoji TakeuchiEmail author
Review

Abstract

In this review, we describe recent advances in droplet-based microfluidics technology that can be applied in studies of artificial cells. Artificial cells are simplified models of living cells and provide valuable model platforms designed to reveal the functions of biological systems. The study of artificial cells is promoted by microfluidics technologies, which provide control over tiny volumes of solutions during quantitative chemical experiments and other manipulations. Here, we focus on current and future trends in droplet microfluidics and their applications in studies of artificial cells.

Keywords

Microfluidics Artificial cells Phospholipids 

Notes

Acknowledgements

We wish to thank Hiroaki Onoe and Daisuke Kiriya (University of Tokyo), Ryuji Kawano (Kanagawa Academy of Science and Technology), and Hirohide Saito (Kyoto University) for helpful discussions.

References

  1. 1.
    Schrodinger E (1944) What is Life? Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Luisi P, Ferri F, Stano P (2006) Naturwissenschaften 93:1–13Google Scholar
  3. 3.
    Stano P, Luisi PL (2010) Chem Commun 3639–3653Google Scholar
  4. 4.
    Walde P, Cosentino K, Engel H, Stano P (2010) Chembiochem 11:848–865Google Scholar
  5. 5.
    Baroud CN, Gallaire F, Dangla R (2010) Lab Chip 10:2032–2045Google Scholar
  6. 6.
    Griffiths AD, Tawfik DS (2006) Trends Biotechnol 24:395–402Google Scholar
  7. 7.
    Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, Demello AJ (2008) Lab Chip 8:1244–1254Google Scholar
  8. 8.
    Kelly BT, Baret JC, Taly V, Griffiths AD (2007) Chem Commun 1773–1788Google Scholar
  9. 9.
    Song H, Chen DL, Ismagilov RF (2006) Angew Chem Int Ed 45:7336–7356Google Scholar
  10. 10.
    Teh SY, Lin R, Hung LH, Lee AP (2008) Lab Chip 8:198–220Google Scholar
  11. 11.
    Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Angew Chem Int Ed 49:5846–5868Google Scholar
  12. 12.
    Oberholzer T, Albrizio M, Luisi P (1995) Chem Biol 2:677–682Google Scholar
  13. 13.
    Nomura SM, Tsumoto K, Hamada T, Akiyoshi K, Nakatani Y, Yoshikawa K (2003) Chembiochem 4:1172–1175Google Scholar
  14. 14.
    Ota S, Yoshizawa S, Takeuchi S (2009) Angew Chem Int Ed 48:6533–6537Google Scholar
  15. 15.
    Tsumoto K, Nomura SM, Nakatani Y, Yoshikawa K (2001) Langmuir 17:7225–7228Google Scholar
  16. 16.
    Yu W, Sato K, Wakabayashi M, Nakaishi T, Ko-Mitamura EP, Shima Y, Urabe I, Yomo T (2001) J Biosci Bioeng 92:590–593Google Scholar
  17. 17.
    Karlsson A, Karlsson R, Karlsson M, Cans A, Stromberg A, Ryttsen F, Orwar O (2001) Nature 409:150–152Google Scholar
  18. 18.
    Dittrich PS, Jahnz M, Schwille P (2005) Chembiochem 6:811–814Google Scholar
  19. 19.
    Fiordemondo D, Stano P (2007) Chembiochem 8:1965–1973Google Scholar
  20. 20.
    Hase M, Yamada A, Hamada T, Baigl D, Yoshikawa K (2007) Langmuir 23:348–352Google Scholar
  21. 21.
    Kato A, Shindo E, Sakaue T, Tsuji A, Yoshikawa K (2009) Biophys J 97:1678–1686Google Scholar
  22. 22.
    Pietrini AV, Luisi PL (2004) Chembiochem 5:1055–1062Google Scholar
  23. 23.
    Takinoue M, Onoe H, Takeuchi S (2010) Small 6:2374–2377Google Scholar
  24. 24.
    Tan WH, Takeuchi S (2006) Lab Chip 6:757–763Google Scholar
  25. 25.
    Tawfik DS, Griffiths AD (1998) Nat Biotechnol 16:652–656Google Scholar
  26. 26.
    Tsuji A, Yoshikawa K (2010) Chembiochem 11:351–357Google Scholar
  27. 27.
    Tsuji A, Yoshikawa K (2010) J Am Chem Soc 132:12464–12471Google Scholar
  28. 28.
    Urabe H, Ichihashi N, Matsuura T, Hosoda K, Kazuta Y, Kita H, Yomo T (2010) Biochemistry 49:1809–1813Google Scholar
  29. 29.
    Squires TM, Quake SR (2005) Rev Mod Phys 77:977–1026Google Scholar
  30. 30.
    Okushima S, Nisisako T, Torii T, Higuchi T (2004) Langmuir 20:9905–9908Google Scholar
  31. 31.
    Tan W, Takeuchi S (2007) Adv Mater 19:2696–2701Google Scholar
  32. 32.
    Bayley H, Cronin B, Heron A, Holden MA, Hwang WL, Syeda R, Thompson J, Wallace M (2008) Mol Biosyst 4:1191–1208Google Scholar
  33. 33.
    Fair R (2007) Microfluid Nanofluid 3:245–281Google Scholar
  34. 34.
    Jung SY, Retterer ST, Collier CP (2010) Lab Chip 10:2688–2694Google Scholar
  35. 35.
    Nisisako T, Torii T, Higuchi T (2002) Lab Chip 2:24–26Google Scholar
  36. 36.
    Priest C, Herminghaus S, Seemann R (2006) Appl Phys Lett 88:024106Google Scholar
  37. 37.
    Sugiura S, Nakajima M, Iwamoto S, Seki M (2001) Langmuir 17:5562–5566Google Scholar
  38. 38.
    Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Phys Rev Lett 86:4163–4166Google Scholar
  39. 39.
    Wang W, Yang C, Li CM (2009) Small 5:1149–1152Google Scholar
  40. 40.
    Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Lab Chip 6:437–446Google Scholar
  41. 41.
    Anna S, Bontoux N, Stone H (2003) Appl Phys Lett 82:364–366Google Scholar
  42. 42.
    Hashimoto M, Shevkoplyas SS, Zasonska B, Szymborski T, Garstecki P, Whitesides GM (2008) Small 4:1795–1805Google Scholar
  43. 43.
    Tan Y, Cristini V, Lee A (2006) Sens Actuators B 114:350–356Google Scholar
  44. 44.
    Takeuchi S, Garstecki P, Weibel D, Whitesides G (2005) Adv Mater 17:1067–1072Google Scholar
  45. 45.
    Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Science 308:537–541Google Scholar
  46. 46.
    Yobas L, Martens S, Ong WL, Ranganathan N (2006) Lab Chip 6:1073–1079Google Scholar
  47. 47.
    Huang SH, Tan WH, Tseng FG, Takeuchi S (2006) J Micromech Microeng 16:2336–2344Google Scholar
  48. 48.
    Adamson DN, Mustafi D, Zhang JXJ, Zheng B, Ismagilov RF (2006) Lab Chip 6:1178–1186Google Scholar
  49. 49.
    Tan YC, Fisher JS, Lee AI, Cristini V, Lee AP (2004) Lab Chip 4:292–298Google Scholar
  50. 50.
    Menetrier-Deremble L, Tabeling P (2006) Phys Rev E 74:035303Google Scholar
  51. 51.
    Link D, Anna S, Weitz D, Stone H (2004) Phys Rev Lett 92:054503Google Scholar
  52. 52.
    Baroud C, Delville JP, Gallaire F, Wunenburger R (2007) Phys Rev E 75:046302Google Scholar
  53. 53.
    Ahmed R, Jones T (2006) J Electrostat 64:543–549Google Scholar
  54. 54.
    Ahn K, Agresti J, Chong H, Marquez M, Weitz D (2006) Appl Phys Lett 88:264105Google Scholar
  55. 55.
    Jones T, Gunji M, Washizu M, Feldman M (2001) J Appl Phys 89:1441–1448Google Scholar
  56. 56.
    Lee J, Moon H, Fowler J, Schoellhammer T, Kim CJ (2002) Sens Actuators A 95:259–268Google Scholar
  57. 57.
    Cho SK, Moon H, Kim CJ (2003) J Microelectromech Syst 12:70–80Google Scholar
  58. 58.
    Pollack M, Fair R, Shenderov A (2000) Appl Phys Lett 77:1725–1726Google Scholar
  59. 59.
    Pollack M, Shenderov A, Fair R (2002) Lab Chip 2:96–101Google Scholar
  60. 60.
    He M, Kuo J, Chiu D (2006) Langmuir 22:6408–6413Google Scholar
  61. 61.
    Takinoue M, Ma Y, Mori Y, Yoshikawa K (2009) Chem Phys Lett 476:323–328Google Scholar
  62. 62.
    Kotz K, Noble K, Faris G (2004) Appl Phys Lett 85:2658–2660Google Scholar
  63. 63.
    Kotz K, Gu Y, Faris G (2005) J Am Chem Soc 127:5736–5737Google Scholar
  64. 64.
    Tang J, Jofre AM, Kishore RB, Reiner JE, Greene ME, Lowman GM, Denker JS, Willis CCC, Helmerson K, Goldner LS (2009) Anal Chem 81:8041–8047Google Scholar
  65. 65.
    Schwartz JA, Vykoukal JV, Gascoyne PRC (2004) Lab Chip 4:11–17Google Scholar
  66. 66.
    Wang W, Yang C, Li CM (2009) Lab Chip 9:1504–1506Google Scholar
  67. 67.
    Chuang H, Kumar A, Wereley S (2008) Appl Phys Lett 93:064104Google Scholar
  68. 68.
    Pei S, Valley J, Neale S, Jamshidi A, Hsu H, Wu M (2010) In: IEEE 23 rd international conference on micro electro mechanical systems (MEMS), pp 252–255Google Scholar
  69. 69.
    Abate AR, Hung T, Mary P, Agresti JJ, Weitz DA (2010) Proc Natl Acad Sci USA 107:19163–19166.Google Scholar
  70. 70.
    Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Angew Chem Int Ed 45:2556–2560Google Scholar
  71. 71.
    Priest C, Herminghaus S, Seemann R (2006) Appl Phys Lett 89:134101Google Scholar
  72. 72.
    Zagnoni M, Cooper JM (2009) Lab Chip 9:2652–2658Google Scholar
  73. 73.
    Zagnoni M, Baroud CN, Cooper JM (2009) Phys Rev E 80:046303Google Scholar
  74. 74.
    Ristenpart WD, Bird JC, Belmonte A, Dollar F, Stone HA (2009) Nature 461:377–380Google Scholar
  75. 75.
    Herminghaus S (1999) Phys Rev Lett 83:2359–2361Google Scholar
  76. 76.
    Song H, Bringer M, Tice J, Gerdts C, Ismagilov R (2003) Appl Phys Lett 83:4664–4666Google Scholar
  77. 77.
    Song H, Tice JD, Ismagilov RF (2003) Angew Chem Int Ed 42:768–772Google Scholar
  78. 78.
    Mugele F, Baret J, Steinhauser D (2006) Appl Phys Lett 88:204106Google Scholar
  79. 79.
    Paik P, Pamula V, Fair R (2003) Lab Chip 3:253–259Google Scholar
  80. 80.
    Paik P, Pamula V, Pollack M, Fair R (2003) Lab Chip 3:28–33Google Scholar
  81. 81.
    Grier DG (2003) Nature 424:810–816Google Scholar
  82. 82.
    Abbyad P, Dangla R, Alexandrou A, Baroud CN (2011) Lab Chip 11:813–821Google Scholar
  83. 83.
    Millman J, Bhatt K, Prevo B, Velev O (2004) Nat Mater 4:98–102Google Scholar
  84. 84.
    Velev OD, Prevo BG, Bhatt KH (2003) Nature 426:515–516Google Scholar
  85. 85.
    Chiou P, Ohta A, Wu M (2005) Nature 436:370–372Google Scholar
  86. 86.
    Moon H, Wheeler A, Garrell R, Loo J, Kim CJ (2006) Lab Chip 6:1213–1219Google Scholar
  87. 87.
    Chiou P, Moon H, Toshiyoshi H, Kim CJ, Wu M (2003) Sens Actuators A 104:222–228Google Scholar
  88. 88.
    Chiou P, Chang Z, Wu M (2008) J Microelectromech Syst 17:133–138Google Scholar
  89. 89.
    Chiou PY, Park SY, Wu MC (2008) Appl Phys Lett 93:221110Google Scholar
  90. 90.
    Park S, Pan C, Wu T, Kloss C, Kalim S, Callahan C, Teitell M, Chiou E (2008) Appl Phys Lett 92:151101Google Scholar
  91. 91.
    Hase M, Watanabe SN, Yoshikawa K (2006) Phys Rev E 74:046301Google Scholar
  92. 92.
    Jung Y, Oh H, Kang I (2008) J Colloid Interface Sci 322:617–623Google Scholar
  93. 93.
    Takinoue M, Atsumi Y, Yoshikawa K (2010) Appl Phys Lett 96:104105Google Scholar
  94. 94.
    Mori N, Kuribayashi K, Takeuchi S (2010) Appl Phys Lett 96:083701Google Scholar
  95. 95.
    Purcell E (1977) Am J Phys 45:3–11Google Scholar
  96. 96.
    Ahn K, Kerbage C, Hunt T, Westervelt R, Link D, Weitz D (2006) Appl Phys Lett 88:024104Google Scholar
  97. 97.
    Baroud CN, Vincent MRDS, Delville JP (2007) Lab Chip 7:1029–1033Google Scholar
  98. 98.
    Huebner A, Bratton D, Whyte G, Yang M, DeMello A, Abell C, Hollfelder F (2009) Lab Chip 9:692–698Google Scholar
  99. 99.
    Bai Y, He X, Liu D, Patil SN, Bratton D, Huebner A, Hollfelder F, Abell C, Huck WTS (2010) Lab Chip 10:1281–1285Google Scholar
  100. 100.
    Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J (2009) Nat Meth 6:147–152Google Scholar
  101. 101.
    Srisa-Art M, Demello AJ, Edel JB (2010) J Phys Chem B 114:15766–15772Google Scholar
  102. 102.
    Shi W, Qin J, Ye N, Lin B (2008) Lab Chip 8:1432–1435Google Scholar
  103. 103.
    Tan W, Takeuchi S (2007) Proc Natl Acad Sci USA 104:1146–1151Google Scholar
  104. 104.
    Suzuki H, Takeuchi S (2008) Anal Bioanal Chem 391:2695–2702Google Scholar
  105. 105.
    Funakoshi K, Suzuki H, Takeuchi S (2006) Anal Chem 78:8169–8174Google Scholar
  106. 106.
    Malmstadt N, Nash M, Purnell R, Schmidt J (2006) Nano Lett 6:1961–1965Google Scholar
  107. 107.
    Holden M, Needham D, Bayley H (2007) J Am Chem Soc 129:8650–8655Google Scholar
  108. 108.
    Maglia G, Heron AJ, Hwang WL, Holden MA, Mikhailova E, Li Q, Cheley S, Bayley H (2009) Nat Nanotechnol 4:437–440Google Scholar
  109. 109.
    Funakoshi K, Suzuki H, Takeuchi S (2007) J Am Chem Soc 129:12608–12609Google Scholar
  110. 110.
    Kawano R, Osaki T, Sasaki H, Takeuchi S (2010) Small 6:2100–2104Google Scholar
  111. 111.
    Osaki T, Suzuki H, Pioufle BL, Takeuchi S (2009) Anal Chem 81:9866–9870Google Scholar
  112. 112.
    Suzuki H, Tabata K, Noji H, Takeuchi S (2006) Langmuir 22:1937–1942Google Scholar
  113. 113.
    Noireaux V, Libchaber A (2004) Proc Natl Acad Sci USA 101:17669–17674Google Scholar
  114. 114.
    Pautot S, Frisken BJ, Weitz DA (2003) Proc Natl Acad Sci USA 100:10718–10721Google Scholar
  115. 115.
    Yamada A, Yamanaka T, Hamada T, Hase M, Yoshikawa K, Baigl D (2006) Langmuir 22:9824–9828Google Scholar
  116. 116.
    Nishimura K, Hosoi T, Sunami T, Toyota T, Fujinami M, Oguma K, Matsuura T, Suzuki H, Yomo T (2009) Langmuir 25:10439–10443Google Scholar
  117. 117.
    Saito H, Kato Y, Berre ML, Yamada A, Inoue T, Yosikawa K, Baigl D (2009) Chembiochem 10:1640–1643Google Scholar
  118. 118.
    Matosevic S, Paegel BM (2011) J Am Chem Soc 133:2798–2800Google Scholar
  119. 119.
    Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) Nature 429:423–429Google Scholar
  120. 120.
    Kim J, White KS, Winfree E (2006) Mol Syst Biol 2:68Google Scholar
  121. 121.
    Kim J, Winfree E (2011) Mol Syst Biol 7:465Google Scholar
  122. 122.
    Montagne K, Plasson R, Sakai Y, Fujii T, Rondelez Y (2011) Mol Syst Biol 7:466Google Scholar
  123. 123.
    Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Science 314:1585–1588Google Scholar
  124. 124.
    Takinoue M, Kiga D, Shohda K, Suyama A (2008) Phys Rev E 78:041921Google Scholar
  125. 125.
    Takinoue M, Kiga D, Shohda K, Suyama A (2009) New Generat Comput 27:107–127Google Scholar
  126. 126.
    Takinoue M, Suyama A (2006) Small 2:1244–1247Google Scholar
  127. 127.
    Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Science 318:1121–1125Google Scholar
  128. 128.
    Ellis RJ (2001) Curr Opin Struct Biol 11:114–119Google Scholar
  129. 129.
    Luisi PL, Allegretti M, Souza TPD, Steiniger F, Fahr A, Stano P (2010) Chembiochem 11:1989–1992Google Scholar
  130. 130.
    Paulsson J (2004) Nature 427:415–418Google Scholar
  131. 131.
    Sollogoub M, Guieu S, Geoffroy M, Yamada A, Estevez-Torres A, Yoshikawa K, Baigl D (2008) Chembiochem 9:1201–1206Google Scholar
  132. 132.
    Yoshikawa K (2001) Adv Drug Deliv Rev 52:235–244Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  2. 2.Interdisciplinary Graduate School of Science and EngineeringTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations