Advertisement

Analytical and Bioanalytical Chemistry

, Volume 400, Issue 9, pp 3073–3083 | Cite as

Analytical characteristics and determination of major novel brominated flame retardants (NBFRs) in indoor dust

  • Nadeem Ali
  • Stuart Harrad
  • Dudsadee Muenhor
  • Hugo Neels
  • Adrian CovaciEmail author
Original Paper

Abstract

A new method was developed and optimized for the detection of major “novel” brominated flame retardants (NBFRs), which included decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), tetrabromobisphenol A-bis(2,3-dibromopropylether) (TBBPA-DBPE), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH) and hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO). Several solid phase sorbents were tested, and finally, a two-step cleanup procedure was established. The first step on activated silica was used to fractionate the dust extracts, while the second step on acidified silica (silica gel impregnated with sulphuric acid 44% w/w) and on Florisil®, respectively, was essential for advanced cleanup. High recoveries for NBFRs (range, 75–94%) were achieved. Analysis was performed by gas chromatography coupled with mass spectrometry in electron capture negative ionization using a DB-5ms (15 m × 0.25 mm × 0.1 μm) capillary column. Quantification of DBDPE, BTBPE and TBBPA-DBPE was based on ion m/z 79, while characteristic ions were used for quantification of TBB (m/z 359), HCDBCO (m/z 310) and TBPH (m/z 384). The method provided good repeatability; within- and between-day precision were ≤14% for all NBFRs. Method limits of quantification ranged between 1 and 20 ng g−1; dust and NBFRs were not detected in blanks. The method was further applied to indoor dust (n = 21) collected from e-waste facilities in Thailand. Except for HCDBCO, all NBFRs were detected in the e-waste dust with concentrations up to 44,000 and 22,600 ng g−1 DBDPE and BTBPE, respectively. The dust profile was dominated by DBDPE (50%) > BTBPE (45%) > TBBPA-DBPE (3%) > TBPH (1.9%) > TBB (0.1%). Significant correlations (p < 0.05) were found between the concentrations of BTBPE and BDE 183 or BDE 197 on the one hand, between TBPH and BDE 47 or BDE 99, and between DBDPE and BDE 209, on the other hand. Concentrations of TBB were not positively correlated with TBPH, which suggests different emission sources.

Keywords

NBFRs Indoor dust Analytical method E-waste dust 

Notes

Acknowledgements

A.C. acknowledges the provision of a postdoctoral fellowship from the Research Scientific Foundation of Flanders (FWO). N.A. thanks the University of Antwerp for financially supporting his Ph.D. studies. D.M. is grateful to the Royal Thai Government for Ph.D. scholarship funding.

References

  1. 1.
    Alaee M, Arias P, Sjodin A, Bergman A (2003) Environ Int 29:683–689CrossRefGoogle Scholar
  2. 2.
    de Wit CA (2002) Chemosphere 46:583–624CrossRefGoogle Scholar
  3. 3.
    Hites RA (2004) Environ Sci Technol 38:945–956CrossRefGoogle Scholar
  4. 4.
    Law RJ, Allchin CR, de Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, de Wit CA (2006) Chemosphere 64:187–208CrossRefGoogle Scholar
  5. 5.
    Covaci A, Gerecke AC, Law RJ, Voorspoels S, Kohler M, Heeb NV, Leslie H, Allchin CR, de Boer J (2006) Environ Sci Technol 40:3679–3688CrossRefGoogle Scholar
  6. 6.
    Covaci A, Voorspoels S, Abdallah MAE, Geens T, Harrad S, Law RJ (2009) J Chromatogr A 1216:346–363CrossRefGoogle Scholar
  7. 7.
    Harrad S, de Wit C, Abdallah MAE, Bergh C, Björklund J, Covaci A, Darnerud PO, de Boer J, Diamond M, Huber S, Leonards P, Mandalakis M, Ostman C, Småusten LH, Thomsen C, Webster T (2010) Environ Sci Technol 44:3231–3231Google Scholar
  8. 8.
    Birnbaum LS, Staskal DF (2004) Environ Health Perspect 112:9–17CrossRefGoogle Scholar
  9. 9.
    van der Ven LTM, van de Kuil T, Verhoef A, Leonards PEG, Slob W, Canton RF, Germer S, Hamers T, Visser TJ, Litens S, Hakansson H, Fery Y, Schrenk D, van den Berg M, Piersma AH, Vos JG (2008) Toxicology 245:109–122CrossRefGoogle Scholar
  10. 10.
    Vonderheide AP, Mueller KE, Meija J, Welsh GL (2008) Sci Total Environ 400:425–436CrossRefGoogle Scholar
  11. 11.
    European Union (2003) The ban of marketing the Penta- and Octa-BDE mixtures. Directive 2003/11/EC of the European parliament and of the council of 6 February 2003 amending for the 24th time Council Directive 76/769/EEC relating to restrictions on the marketing and use of certain dangerous substances and preparationsGoogle Scholar
  12. 12.
    Renner R (2004) Environ Sci Technol 38:14AGoogle Scholar
  13. 13.
    UNEP Stockholm Convention on POPs. Available at http://chm.pops.int/default.aspx
  14. 14.
    European Court of Justice (2008) Cases C-14/06 and C-295/06, Judgement of the Court, 1 April 2008, Directive 2002/95/EC and Commission Decision 2005/717/EC. Available at http://curia.europa.eu. Accessed March 2011
  15. 15.
    Covaci A, Harrad S, Abdallah MAE, Ali N, Law RJ, Herzke D, de Wit CA (2011) Environ Int 37:532–556CrossRefGoogle Scholar
  16. 16.
    Covaci A, Voorspoels S, Ramos L, Neels H, Blust R (2007) J Chromatogr A 1153:145–171CrossRefGoogle Scholar
  17. 17.
    Kolic TM, Shen L, MacPherson K, Fayez L, Gobran T, Helm PA, Marvin CH, Arsenault G, Reiner EJ (2009) J Chromatogr Sci 47:83–91Google Scholar
  18. 18.
    Zhou SN, Reiner EJ, Marvin C, Kolic T, Riddell N, Helm P, Dorman F, Misselwitz M, Brindle ID (2010) J Chromatogr A 1217:633–641CrossRefGoogle Scholar
  19. 19.
    Zhou SN, Reiner EJ, Marvin C, Helm P, Riddell N, Dorman F, Misselwitz M, Shen L, Crozier P, MacPherson K, Brindle ID (2010) Anal Bioanal Chem 396:1311–1320CrossRefGoogle Scholar
  20. 20.
    Muenhor D, Harrad S, Ali N, Covaci A (2010) Environ Int 36:690–698CrossRefGoogle Scholar
  21. 21.
    Sandau CD, Sojdin A, Davis MD, Barr JR, Maggio VL, Waterman A, Preston KE, Preau JL Jr, Barr DB, Needham LL, Patterson DG Jr (2003) Anal Chem 75:71–77CrossRefGoogle Scholar
  22. 22.
    Stapleton HM, Allen JG, Kelly SM, Konstantinov A, Klosterhaus S, Watkins D, McClean MD, Webster TF (2008) Environ Sci Technol 42:6910–6916CrossRefGoogle Scholar
  23. 23.
    Ricklund N, Kierkegaard A, McLachlan MS (2008) Chemosphere 73:1799–1804CrossRefGoogle Scholar
  24. 24.
    Harrad S, Ibarra C, Abdallah MAE, Boon R, Neels H, Covaci A (2008) Environ Int 34:1170–1175CrossRefGoogle Scholar
  25. 25.
    Sawal G, Feibicke M, Meinecke S, Warmbrunn-Suckrow E, Lepom P (2008) Organohalog Compd 70:2029–2032Google Scholar
  26. 26.
    WHO (1997) Flame retardants: a general introduction. Environmental health criteria 192. WHO, GenevaGoogle Scholar
  27. 27.
    Shi T, Chen SJ, Luo XJ, Zhang XL, Tang CM, Luo Y, Ma YJ, Wu JP, Peng XZ, Mai BX (2009) Chemosphere 74:910–916CrossRefGoogle Scholar
  28. 28.
    Davis EF, Stapleton HM (2009) Environ Sci Technol 43:5739–5746CrossRefGoogle Scholar
  29. 29.
    Harju M, Heimstad ES, Herzke D, Sandanger T, Posner S, Wania F (2009) Emerging “new” brominated flame retardants in flame retarded products and the environment. Report 2462, Norwegian Pollution Control Authority, Oslo, NorwayGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nadeem Ali
    • 1
  • Stuart Harrad
    • 2
  • Dudsadee Muenhor
    • 2
  • Hugo Neels
    • 1
  • Adrian Covaci
    • 1
    • 3
    Email author
  1. 1.Toxicological CentreUniversity of AntwerpWilrijk-AntwerpBelgium
  2. 2.Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental SciencesUniversity of BirminghamBirminghamUK
  3. 3.Laboratory for Ecophysiology, Biochemistry and ToxicologyUniversity of AntwerpAntwerpBelgium

Personalised recommendations