Analytical and Bioanalytical Chemistry

, Volume 400, Issue 7, pp 2085–2091 | Cite as

The gold-nanoparticle-based surface plasmon resonance light scattering and visual DNA aptasensor for lysozyme

  • Xinyi Wang
  • Yao Xu
  • Yang Chen
  • Limei Li
  • Feng Liu
  • Na LiEmail author
Original Paper


We developed a new simple and sensitive assay for lysozyme based on gold nanoparticle plasmon resonance light scattering (PRLS) measurement and naked-eye detection using for the first time the lysozyme DNA aptamer as the recognition element. Lysozyme DNA aptamer could stabilize gold nanoparticles (AuNPs) at high ionic strength. Introducing lysozyme to the system easily triggered the aggregation of AuNPs, producing a red-to-blue color change of the solution, red-shifted plasmon absorption, and enhanced plasmon resonance light scattering. The linear range was found to be 0.2∼4 nM for 0.7 nM AuNPs, 0.3∼6 nM for 1.4 nM AuNPs and 0.6∼8 nM for 2.1 nM AuNPs. About 0.1 nM lysozyme can produce an observable enhancement of PRLS signal. For visual detection, 1 nM lysozyme can produce a very distinctive color change. Satisfactory recoveries were obtained for simulated saliva and diluted urine samples, indicating that the method has potential for analyses of clinical samples. The simplicity and high sensitivity that are consistent with the resources and needs of many laboratories makes this method a good choice for routine analysis.


Schematic description and demonstration of aggregation of DNA aptamer stabalized AuNPs for colorimetric and PRLS sensing of lysozyme.


Gold nanoparticles Aggregation Lysozyme DNA aptamer Plasmon resonance light scattering Visual detection 



This work was supported by the National Natural Science Foundation of China (nos. 20975004 and 21035005) and Instrumental Analysis Fund of Peking University.

Supplementary material

216_2011_4943_MOESM1_ESM.pdf (17 kb)
(PDF 17 kb)


  1. 1.
    Sperling RA, Rivera GP, Zhang F, Zanella M, Parak WJ (2008) Chem Soc Rev 37:1896–1908CrossRefGoogle Scholar
  2. 2.
    Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, de Abajo FJG (2008) Chem Soc Rev 37:1792–1805CrossRefGoogle Scholar
  3. 3.
    Xia F, Zuo XL, Yang RQ, Xiao Y, Kang D, Vallee-Belisle A, Gong X, Yuen JD, Hsu BBY, Heeger AJ, Plaxco KW (2010) Proc Natl Acad Sci USA 107:10837–10841CrossRefGoogle Scholar
  4. 4.
    Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) J Am Chem Soc 120:1959–1964CrossRefGoogle Scholar
  5. 5.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Science 277:1078–1081CrossRefGoogle Scholar
  6. 6.
    Wang H, Wang YX, Jin JY, Yang RH (2008) Anal Chem 80:9021–9028CrossRefGoogle Scholar
  7. 7.
    Tan YN, Su XD, Liu ET, Thomsen JS (2010) Anal Chem 82:2759–2765CrossRefGoogle Scholar
  8. 8.
    Wang XY, Zou MJ, Xu X, Lei R, Li KA, Li N (2009) Anal Bioanal Chem 395:2397–2403CrossRefGoogle Scholar
  9. 9.
    Zhang JQ, Wang YS, He Y, Jiang T, Yang HM, Tan X, Kang RH, Yuan YK, Shi LF (2010) Anal Biochem 397:212–217CrossRefGoogle Scholar
  10. 10.
    Chiappelli F, Iribarren FJ, Prolo P (2006) Bioinformation 1:331–334Google Scholar
  11. 11.
    Perera S, Uddin M, Hayes JA (1997) Int J Behav Med 4:170–178CrossRefGoogle Scholar
  12. 12.
    Levinson SS, Elin RJ, Yam L (2002) Clin Chem 48:1131–1132Google Scholar
  13. 13.
    Morsky P, Aine E (1983) Clin Chim Acta 129:201–209CrossRefGoogle Scholar
  14. 14.
    Gupta DK, Vonfigura K, Hasilik A (1987) Clin Chim Acta 165:73–82CrossRefGoogle Scholar
  15. 15.
    Virella G (1977) Clin Chim Acta 75:107–115CrossRefGoogle Scholar
  16. 16.
    Schneider N, Weigel I, Werkmeister K, Pischetsrieder M (2010) J Agric Food Chem 58:76–81CrossRefGoogle Scholar
  17. 17.
    Gao P, John MR, Schmidtgayk H, Arndt B, Scheida M, Theuer D (1995) Clin Chim Acta 239:167–177CrossRefGoogle Scholar
  18. 18.
    Rauch P, Poplstein M, Hochel I, Fukal L, Ferri E, Abagnato CA, Girotti S, Roda A (1995) J Biolumin Chemilumin 10:35–40CrossRefGoogle Scholar
  19. 19.
    Sato R, Takeyama H, Tanaka T, Matsunaga T (2001) Appl Biochem Biotechnol 91–3:109–116CrossRefGoogle Scholar
  20. 20.
    Tombelli S, Minunni A, Mascini A (2005) Biosens Bioelectron 20:2424–2434CrossRefGoogle Scholar
  21. 21.
    Cox JC, Ellington AD (2001) Bioorg Med Chem 9:2525–2531CrossRefGoogle Scholar
  22. 22.
    Cho EJ, Collett JR, Szafranska AE, Ellington AD (2006) Anal Chim Acta 564:82–90CrossRefGoogle Scholar
  23. 23.
    Wang J, Liu B (2009) Chem Commun 2284–2286Google Scholar
  24. 24.
    Cheng AKH, Ge B, Yu HZ (2007) Anal Chem 79:5158–5164CrossRefGoogle Scholar
  25. 25.
    Peng YG, Zhang DD, Li Y, Qi HL, Gao Q, Zhang CX (2009) Biosens Bioelectron 25:94–99CrossRefGoogle Scholar
  26. 26.
    Wang B, Yu C (2010) Angew Chem Int Edit 49:1485–1488Google Scholar
  27. 27.
    Huang HP, Jie GF, Cui RJ, Zhu JJ (2009) Electrochem Commun 11:816–818CrossRefGoogle Scholar
  28. 28.
    Tran DT, Janssen KPF, Pollet J, Lammertyn E, Anne J, Van Schepdael A, Lammertyn J (2010) Molecules 15:1127–1140CrossRefGoogle Scholar
  29. 29.
    Wang XY, Xu Y, Xu XA, Hu K, Xiang MH, Li LM, Liu F, Li N (2010) Talanta 82:693–697CrossRefGoogle Scholar
  30. 30.
    Li HX, Rothberg L (2004) Proc Natl Acad Sci USA 101:14036–14039CrossRefGoogle Scholar
  31. 31.
    Wang LH, Liu XF, Hu XF, Song SP, Fan CH (2006) Chem Commun 36:3780–3782CrossRefGoogle Scholar
  32. 32.
    Li HX, Rothberg LJ (2004) J Am Chem Soc 126:10958–10961CrossRefGoogle Scholar
  33. 33.
    Xu XHN, Huang S, Brownlow W, Salaita K, Jeffers RB (2004) J Phys Chem B 108:15543–15551CrossRefGoogle Scholar
  34. 34.
    Lee MH, Chen YC, Ho MH, Lin HY (2010) Anal Bioanal Chem 397:1457–1466CrossRefGoogle Scholar
  35. 35.
    Wang YY, Pu KY, Liu B (2010) Langmuir 26:10025–10030CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Xinyi Wang
    • 1
    • 2
  • Yao Xu
    • 1
  • Yang Chen
    • 1
  • Limei Li
    • 2
  • Feng Liu
    • 1
  • Na Li
    • 1
    Email author
  1. 1.Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.College of SciencesShenyang Agricultural UniversityShenyangChina

Personalised recommendations