Analytical and Bioanalytical Chemistry

, Volume 400, Issue 7, pp 2141–2147

Determination of phenylenediamine isomers in hair dyes by coal cinders micro-column extraction and MEKC

  • Yiwei Wu
  • Feng Jiang
  • Lin Chen
  • Jing Zheng
  • Zhenli Deng
  • Qing Tao
  • Jing Zhang
  • Lijuan Han
  • Xiaoshu Wei
  • Aimin Yu
  • Haili Zhang
Original Paper

Abstract

A new micellar electrokinetic chromatography (MEKC) method using beta-cyclodextrins (β-CDs) and 1-butyl-3-methylimidazolium hexafluorophosphates (ionic liquids) as additives was successfully developed for determination of para-, meta-, and ortho-phenylenediamines isomers (p-P, m-P, and o-P) in hair dyes. To improve the sensitivity of the MEKC-UV, a simple and cheap flow injection (FI) technique using a micro-column packed with coal cinders (the by-products from combustion in a boiler) as solid-phase extractant was also investigated. In the presence of 20 mmol L−1 phosphates at pH 5.5, addition of 12 mmol L−1 ionic liquids and 8 mmol L−1 β-CDs greatly improved the separation efficiency. The three analytes could be quantitatively adsorbed by coal cinders, and desorbed readily with 0.15 mL of 0.01 mol L−1 NaOH. Under the optimum conditions, an enrichment factor (EF) of 33.3 was obtained, and determination limits of p-P, m-P, and o-P were 1.97 × 10−7, 0.99 × 10−7, and 0.61 × 10−7 mol L−1, respectively. The adsorption capacities of the coal cinders micro-column for p-P, m-P, and o-P were all 1.20 mg g−1. The presented procedure was successfully applied to the determination of p-P, m-P, and o-P in hair dyes with satisfactory results.

Figure

Electropherograms of 0.1 mmol L−1 p-P, m-P, and o-P obtained by a direct MEKC and b SPE-MEKC; SPE conditions: sample solution flow rate 0.30 mL min−1, eluent flow rate 0.45 mL min−1, desorption by 0.15 mL of 0.01 mol L−1 NaOH; MEKC conditions: 20 mmol L−1 phosphates containing 12 mmol L−1 ionic liquid and 8 mmol L−1 β-CD at pH 5.5; injection time 50 s

Keywords

Coal cinders micro-column extraction Hair dye MEKC Phenylenediamine isomers 

References

  1. 1.
    Gerhard JN, Daniel D, Alexia G, Pierre AM, Herve T, Jacques L (2005) Toxicol Lett 158:196–212CrossRefGoogle Scholar
  2. 2.
    Gerhard J, Nohynek R, Florence F, Herve T (2004) Food Chem Toxicol 42:517–743CrossRefGoogle Scholar
  3. 3.
    Bruce N, William A (1981) Urban Soc Change Rev 14:30Google Scholar
  4. 4.
    Maria Luisa DG, Antonella L, Adolfo LP, Angelo L, Anna N, Francesca P, Carlo S (2005) J Chromatogr A 1066:143–148CrossRefGoogle Scholar
  5. 5.
    Zhou JX, Wang EK (1991) Talanta 38:547–555CrossRefGoogle Scholar
  6. 6.
    Motoko N, Kazuo M, Jean-Michel K (2007) Anal Chim Acta 588:316–320CrossRefGoogle Scholar
  7. 7.
    Ayesha AS, Hafiz A (2010) Int J Environ Res Public Health 7:1681–1693CrossRefGoogle Scholar
  8. 8.
    Wang SG, Mosley C, Stewart G, Yu HT (2008) J Photochem Photobiol A 197:34–39CrossRefGoogle Scholar
  9. 9.
    Dong SQ, Chi LZ, Zhang S, He PG, Wang QJ, Fang YZ (2008) Anal Bioanal Chem 391:653–659CrossRefGoogle Scholar
  10. 10.
    Dong SQ, Chi LZ, Zhang S, He PG, Wang QJ, Fang YZ (2009) J Sep Sci 32:3232–3238CrossRefGoogle Scholar
  11. 11.
    Timerbaev AR (2007) Electrophoresis 28:3420–3435CrossRefGoogle Scholar
  12. 12.
    Wu YW, Jiang YY, Liu JF, Xiong K (2008) Electrophoresis 29:819–826CrossRefGoogle Scholar
  13. 13.
    Rodriguez GE, Carabias MR, Cruz EM (2009) J Sep Sci 32:575–584CrossRefGoogle Scholar
  14. 14.
    Li ZB, Huang DN, Tang ZX (2010) Talanta 82:1181–1185CrossRefGoogle Scholar
  15. 15.
    Yan HY, Du JJ, Zhang XG (2010) J Sep Sci 33:1829–1835CrossRefGoogle Scholar
  16. 16.
    Zhou QX, Mao JL, Xiao JP (2010) Anal Methods 2:1063–1068CrossRefGoogle Scholar
  17. 17.
    Ding YS, Rogers K (2010) Electrophoresis 31:2602–2607CrossRefGoogle Scholar
  18. 18.
    Xu Q, Yin XY, Wu SY, Wang M, Wen ZY, Gu ZZ (2010) Microchim Acta 168:267–275CrossRefGoogle Scholar
  19. 19.
    Malayappan B, Palanisamy A, Rama Jeevan GJ, Ganga R (2004) Anal Chim Acta 509:39–45CrossRefGoogle Scholar
  20. 20.
    Yang J, Wang S, Lu ZB, Yang J, Lou SJ (2009) J Hazard Mater 168:331–337CrossRefGoogle Scholar
  21. 21.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  22. 22.
    Wang P, Ren J (2004) J Pharm Biomed Anal 34:277–283CrossRefGoogle Scholar
  23. 23.
    Yu LJ, Qin WD, Sam Fong YL (2005) Anal Chim Acta 547:165–171CrossRefGoogle Scholar
  24. 24.
    Li X, Shuang Q, Cui JS, Qin PD, Hong XC, Ying LZ, Xin XZ (2010) J Chromatogr B 878:1443–1388CrossRefGoogle Scholar
  25. 25.
    Zhou QX, Gao YY, Bai HH, Xie GH (2010) J Chromatogr A 1217:5021–5025CrossRefGoogle Scholar
  26. 26.
    Kan XW, Zhao Q, Shao DL, Geng ZR, Wang ZL, Zhu JJ (2010) J Phys Chem B 114:3999–4004CrossRefGoogle Scholar
  27. 27.
    Qiao J, Qi L, Ma HM (2009) J Sep Sci 32:3936–3944CrossRefGoogle Scholar
  28. 28.
    Meyer A, Blomeke B, Fischer K (2009) J Chromatogr B 877:1627–1633CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yiwei Wu
    • 1
    • 2
  • Feng Jiang
    • 1
  • Lin Chen
    • 1
  • Jing Zheng
    • 1
  • Zhenli Deng
    • 1
  • Qing Tao
    • 1
  • Jing Zhang
    • 1
  • Lijuan Han
    • 1
  • Xiaoshu Wei
    • 1
  • Aimin Yu
    • 1
  • Haili Zhang
    • 1
  1. 1.Department of Chemistry and Environmental Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse TechniqueHubei Normal UniversityHuangshiChina
  2. 2.Key Laboratory of Analytical Chemistry for Biology and Medicine (Wuhan University), Ministry of EducationWuhanChina

Personalised recommendations