Advertisement

Analytical and Bioanalytical Chemistry

, Volume 400, Issue 5, pp 1397–1404 | Cite as

Towards a synthetic avidin mimic

  • Jesper WiklanderEmail author
  • Björn C. G. Karlsson
  • Teodor Aastrup
  • Ian A. Nicholls
Original Paper

Abstract

A series of streptavidin-mimicking molecularly imprinted polymers has been developed and evaluated for their biotin binding characteristics. A combination of molecular dynamics and NMR spectroscopy was used to examine potential polymer systems, in particular with the functional monomers methacrylic acid and 2-acrylamidopyridine. The synthesis of copolymers of ethylene dimethacrylate and one or both of these functional monomers was performed. A combination of radioligand binding studies and surface area analyses demonstrated the presence of selectivity in polymers prepared using methacrylic acid as the functional monomer. This was predicted by the molecular dynamics studies showing the power of this methodology as a prognostic tool for predicting the behavior of molecularly imprinted polymers.

The biotin binding characteristics of a series of molecularly imprinted polymers have been evaluated and correlated to predictions made by molecular dynamics simulations and 1H-NMR titrations

Keywords

Molecularly imprinted polymer Molecular dynamics Receptor mimic Biotin 

Notes

Acknowledgments

The authors acknowledge the financial support provided by the Swedish Knowledge Foundation (KKS), Swedish Research Council (VR, grant 2006-6041) and Linnaeus University.

References

  1. 1.
    Lichstein HC (1951) Functions of biotin in enzyme systems. In: Harris R (ed) Vitamins & hormones. Academic, New York, pp 27–74Google Scholar
  2. 2.
    Green NM (1975) Avidin. Adv Protein Chem 29:85–133CrossRefGoogle Scholar
  3. 3.
    Wilchek M, Bayer EA (1988) The avidin biotin complex in bioanalytical applications. Anal Biochem 171:1–32CrossRefGoogle Scholar
  4. 4.
    Wilchek M, Bayer EA (1990) Introduction to avidin–biotin technology. Methods Enzymol 184:5–13CrossRefGoogle Scholar
  5. 5.
    Livnah O, Bayer EA, Wilchek M, Sussman JL (1993) 3-Dimensional structures of avidin and the avidin–biotin complex. Proc Nat Acad Sci USA 90:5076–5080CrossRefGoogle Scholar
  6. 6.
    Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 243:85–88CrossRefGoogle Scholar
  7. 7.
    Hendrickson WA, Pahler A, Smith JL, Satow Y, Merritt EA, Phizackerley RP (1989) Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc Nat Acad Sci USA 86:2190–2194CrossRefGoogle Scholar
  8. 8.
    Adrian JC, Wilcox CS (1989) Chemistry of synthetic receptors and functional group arrays. 10. Orderly functional group dyads. Recognition of biotin and adenine derivatives by a new synthetic host. J Am Chem Soc 111:8055–8057CrossRefGoogle Scholar
  9. 9.
    Hegde V, Hung CY, Madhukar P, Cunningham R, Hopfner T, Thummel RP (1993) Design of receptors for urea derivatives based on the pyrido[3,2-g]indole subunit. J Am Chem Soc 115:872–878CrossRefGoogle Scholar
  10. 10.
    Wilson C, Nix J, Szostak J (1998) Functional requirements for specific ligand recognition by a biotin-binding RNA pseudoknot. Biochemistry 37:14410–14419CrossRefGoogle Scholar
  11. 11.
    Goswami S, Dey S (2006) Directed molecular recognition: design and synthesis of neutral receptors for biotin to bind both its functional groups. J Org Chem 71:7280–7287CrossRefGoogle Scholar
  12. 12.
    Herranz F, Santa María MD, Claramunt RM (2006) Molecular recognition: improved binding of biotin derivatives with synthetic receptors. J Org Chem 71:2944–2951CrossRefGoogle Scholar
  13. 13.
    Takeuchi T, Dobashi A, Kimura K (2000) Molecular imprinting of biotin derivatives and its application to competitive binding assay using nonisotopic labeled ligands. Anal Chem 72:2418–2422CrossRefGoogle Scholar
  14. 14.
    Piletska EV, Piletsky SA, Karim K, Terpetschnig E, Turner APF (2004) Biotin-specific synthetic receptors prepared using molecular imprinting. Anal Chim Acta 504:179–183CrossRefGoogle Scholar
  15. 15.
    Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O'Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19:106–180CrossRefGoogle Scholar
  16. 16.
    Berglund J, Nicholls IA, Lindbladh C, Mosbach K (1996) Recognition in molecularly imprinted polymer [alpha]2-adrenoreceptor mimics. Bioorg Med Chem Lett 6:2237–2242CrossRefGoogle Scholar
  17. 17.
    Andersson LI (1996) Application of molecular imprinting to the development of aqueous buffer and organic solvent based radioligand binding assays for (S)-propranolol. Anal Chem 68:111–117CrossRefGoogle Scholar
  18. 18.
    Hoshino Y, Kodama T, Okahata Y, Shea KJ (2008) Peptide imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc 130:15242–15243CrossRefGoogle Scholar
  19. 19.
    Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting—synthesis and characterization of polymeric receptors for cholesterol. J Am Chem Soc 117:7105–7111CrossRefGoogle Scholar
  20. 20.
    Petcu M, Karlsson JG, Whitcombe MJ, Nicholls IA (2009) Probing the limits of molecular imprinting: strategies with a template of limited size and functionality. J Mol Recognit 22:18–25CrossRefGoogle Scholar
  21. 21.
    Tan YG, Zhou ZL, Wang P, Nie LH, Yao SZ (2001) A study of a bio-mimetic recognition material for the BAW sensor by molecular imprinting and its application for the determination of paracetamol in the human serum and urine. Talanta 55:337–347CrossRefGoogle Scholar
  22. 22.
    Yang M, Li Y (2004) Molecularly imprinted polymers with p-acetaminophenol and its positional isomers as templates. Anal Lett 37:2043–2052CrossRefGoogle Scholar
  23. 23.
    Rosengren-Holmberg JP, Karlsson JG, Svenson J, Andersson HS, Nicholls IA (2009) Synthesis and ligand recognition of paracetamol selective polymers: semi-covalent versus non-covalent molecular imprinting. Org Biomol Chem 7:3148–3155CrossRefGoogle Scholar
  24. 24.
    Hedin-Dahlström J, Shoravi S, Wikman S, Nicholls IA (2004) Stereoselective reduction of menthone by molecularly imprinted polymers. Tetrahedron Asymmetr 15:2431–2436CrossRefGoogle Scholar
  25. 25.
    Milojkovic SS, Kostoski D, Comor JJ, Nedeljkovic JM (1997) Radiation induced synthesis of molecularly imprinted polymers. Polymer 38:2853–2855CrossRefGoogle Scholar
  26. 26.
    Percival CJ, Stanley S, Galle M, Braithwaite A, Newton MI, McHale G, Hayes W (2001) Molecular-imprinted, polymer-coated quartz crystal microbalances for the detection of terpenes. Anal Chem 73:4225–4228CrossRefGoogle Scholar
  27. 27.
    Ju JY, Shin CS, Whitcombe MJ, Vulfson EN (1999) Imprinted polymers as tools for the recovery of secondary metabolites produced by fermentation. Biotechnol Bioeng 64:232–239CrossRefGoogle Scholar
  28. 28.
    Spivak D, Shea KJ (1999) Molecular imprinting of carboxylic acids employing novel functional macroporous polymers. J Org Chem 64:4627–4634CrossRefGoogle Scholar
  29. 29.
    Hall AJ, Quaglia M, Manesiotis P, De Lorenzi E, Sellergren B (2006) Polymeric receptors for the recognition of folic acid and related compounds via substructure imprinting. Anal Chem 78:8362–8367CrossRefGoogle Scholar
  30. 30.
    Sundberg SA, Barrett RW, Pirrung M, Lu AL, Kiangsoontra B, Holmes CP (1995) Spatially-addressable immobilization of macromolecules on solid supports. J Am Chem Soc 117:12050–12057CrossRefGoogle Scholar
  31. 31.
    Dixon RW, Radmer RJ, Kuhn B, Kollman PA, Yang J, Raposo C, Wilcox CS, Klumb LA, Stayton PS, Behnke C, Le Trong I, Stenkamp R (2002) Theoretical and experimental studies of biotin analogues that bind almost as tightly to streptavidin as biotin. J Org Chem 67:1827–1837CrossRefGoogle Scholar
  32. 32.
    Santa María D, Claramunt RM, Herranz F, Alkorta I, Elguero J (2009) A theoretical and experimental NMR study of (+)-biotin methyl ester. J Mol Struct 920:323–326CrossRefGoogle Scholar
  33. 33.
    Mubarak ATA, El-Sonbati AZ, El-Bindary AA (2004) Polymer complexes: supramolecular assemblies and structures of poly[N-(2′-pyridyl)propenamide] complexes. Appl Organomet Chem 18:212–220CrossRefGoogle Scholar
  34. 34.
    Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Mertz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688CrossRefGoogle Scholar
  35. 35.
    Wang JM, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074CrossRefGoogle Scholar
  36. 36.
    Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  37. 37.
    Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641CrossRefGoogle Scholar
  38. 38.
    Essmann U, Perera L, Berkowitz ML, Darden TA, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  39. 39.
    Cheatham TE, Miller JL, Fox T, Darden TA, Kollman PA (1995) Molecular-dynamics simulations on solvated biomolecular systems—the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc 117:4193–4194CrossRefGoogle Scholar
  40. 40.
    Karlsson JG, Andersson LI, Nicholls IA (2001) Probing the molecular basis for ligand-selective recognition in molecularly imprinted polymers selective for the local anaesthetic bupivacaine. Anal Chim Acta 435:57–64CrossRefGoogle Scholar
  41. 41.
    Karlsson BCG, O'Mahony J, Karlsson JG, Bengtsson H, Eriksson LA, Nicholls IA (2009) Structure and dynamics of monomer–template complexation: an explanation for molecularly imprinted polymer recognition site heterogeneity. J Am Chem Soc 131:13297–13304CrossRefGoogle Scholar
  42. 42.
    Svenson J, Karlsson JG, Nicholls IA (2004) 1H Nuclear magnetic resonance study of the molecular imprinting of (−)-nicotine: template self-association, a molecular basis for cooperative ligand binding. J Chromatogr A 1024:39–44CrossRefGoogle Scholar
  43. 43.
    Nicholls IA, Andersson HS, Charlton C, Henschel H, Karlsson BCG, Karlsson JG, O'Mahony J, Rosengren AM, Rosengren KJ, Wikman S (2009) Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosens Bioelectron 25:543–552CrossRefGoogle Scholar
  44. 44.
    O'Mahony J, Karlsson BCG, Mizaikoff B, Nicholls IA (2007) Correlated theoretical, spectroscopic and X-ray crystallographic studies of a non-covalent molecularly imprinted polymerisation system. Analyst 132:1161–1168CrossRefGoogle Scholar
  45. 45.
    Rosengren AM, Karlsson JG, Andersson PO, Nicholls IA (2005) Chemometric models of template-molecularly imprinted polymer binding. Anal Chem 77:5700–5705CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jesper Wiklander
    • 1
    Email author
  • Björn C. G. Karlsson
    • 1
  • Teodor Aastrup
    • 2
  • Ian A. Nicholls
    • 1
    • 3
  1. 1.Bioorganic & Biophysical Chemistry Laboratory, Section for Biomaterials and Medicinal Chemistry, School of Natural SciencesLinnaeus UniversityKalmarSweden
  2. 2.Attana ABStockholmSweden
  3. 3.Department of Biochemistry and Organic ChemistryUppsala UniversityUppsalaSweden

Personalised recommendations