Advertisement

Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects

  • Daniela Drescher
  • Guillermo Orts-Gil
  • Gregor Laube
  • Kishore Natte
  • Rüdiger W. Veh
  • Werner Österle
  • Janina Kneipp
Original Paper

Abstract

Cell cultures form the basis of most biological assays conducted to assess the cytotoxicity of nanomaterials. Since the molecular environment of nanoparticles exerts influence on their physicochemical properties, it can have an impact on nanotoxicity. Here, toxicity of silica nanoparticles upon delivery by fluid-phase uptake is studied in a 3T3 fibroblast cell line. Based on XTT viability assay, cytotoxicity is shown to be a function of (1) particle concentration and (2) of fetal calf serum (FCS) content in the cell culture medium. Application of dynamic light scattering shows that both parameters affect particle agglomeration. The DLS experiments verify the stability of the nanoparticles in culture medium without FCS over a wide range of particle concentrations. The related toxicity can be mainly accounted for by single silica nanoparticles and small agglomerates. In contrast, agglomeration of silica nanoparticles in all FCS-containing media is observed, resulting in a decrease of the associated toxicity. This result has implications for the evaluation of the cytotoxic potential of silica nanoparticles and possibly also other nanomaterials in standard cell culture.

Keywords

Agglomeration Cytotoxicity Fibroblast cells Serum proteins Silica nanoparticles 

Notes

Acknowledgments

We thank Michael Weller and Rudolf Schneider of BAM Federal Institute for Materials Research and Testing for use of the cell culture facility. This study has been supported by BAM Federal Institute for Materials Research and Testing within the framework of “BAM Innovationsoffensive” (project NANOTOX 1).

Supplementary material

216_2011_4893_MOESM1_ESM.pdf (222 kb)
Protein adsorption effects (PDF 222 kb)

References

  1. 1.
    Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25CrossRefGoogle Scholar
  2. 2.
    Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381CrossRefGoogle Scholar
  3. 3.
    Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41(11):4158–4163CrossRefGoogle Scholar
  4. 4.
    Brown SC, Kamal M, Nasreen N, Baumuratov A, Sharma P, Antony VB, Moudgil BM (2007) Influence of shape, adhesion and simulated lung mechanics on amorphous silica nanoparticle toxicity. Adv Powder Technol 18(1):69–79CrossRefGoogle Scholar
  5. 5.
    Chang JS, Chang KLB, Hwang DF, Kong ZL (2007) In vitro cytotoxicity of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41(6):2064–2068CrossRefGoogle Scholar
  6. 6.
    Di Pasqua AJ, Sharma KK, Shi YL, Toms BB, Ouellette W, Dabrowiak JC, Asefa T (2008) Cytotoxicity of mesoporous silica nanomaterials. J Inorg Biochem 102(7):1416–1423CrossRefGoogle Scholar
  7. 7.
    Yang H, Liu C, Yang DF, Zhang HS, Xi ZG (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29(1):69–78CrossRefGoogle Scholar
  8. 8.
    Pumera M (2010) Nanotoxicology: the molecular science point of view. Chem Asian J 6(2):340–348CrossRefGoogle Scholar
  9. 9.
    Lin WS, Huang YW, Zhou XD, Ma YF (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217(3):252–259CrossRefGoogle Scholar
  10. 10.
    Lison D, Thomassen LCJ, Rabolli V, Gonzalez L, Napierska D, Seo JW, Kirsch-Volders M, Hoet P, Kirschhock CEA, Martens JA (2008) Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays. Toxicol Sci 104(1):155–162CrossRefGoogle Scholar
  11. 11.
    Napierska D, Thomassen LCJ, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5(7):846–853CrossRefGoogle Scholar
  12. 12.
    Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5(12):1408–1413CrossRefGoogle Scholar
  13. 13.
    Witasp E, Kupferschmidt N, Bengtsson L, Hultenby K, Smedman C, Paulie S, Garcia-Bennett AE, Fadeel B (2009) Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells. Toxicol Appl Pharmacol 239(3):306–319CrossRefGoogle Scholar
  14. 14.
    Orts-Gil G, Natte K, Drescher D, Bresch H, Mantion A, Kneipp J, Österle W (2010) Characterisation of silica nanoparticles prior to in vitro studies: from primary particles to agglomerates. J Nanopart Res. doi: 10.1007/s11051-010-9910-9 Google Scholar
  15. 15.
    Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V (2007) Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1(2):118–129CrossRefGoogle Scholar
  16. 16.
    Thomassen LCJ, Aerts A, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Napierska D, Hoet PH, Kirschhock CEA, Martens JA (2010) Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing. Langmuir 26(1):328–335CrossRefGoogle Scholar
  17. 17.
    Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique. Toxicol Sci 101(2):239–253CrossRefGoogle Scholar
  18. 18.
    Ding M, Chen F, Shi XL, Yucesoy B, Mossman B, Vallyathan V (2002) Diseases caused by silica: mechanisms of injury and disease development. Int Immunopharmacol 2(2–3):173–182CrossRefGoogle Scholar
  19. 19.
    Mossman BT, Churg A (1998) Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157(5):1666–1680Google Scholar
  20. 20.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668CrossRefGoogle Scholar
  21. 21.
    Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2(1):85–96CrossRefGoogle Scholar
  22. 22.
    Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, Addleman SR, Kaysen GA, Moudgil BM, Weber TJ (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100(1):303–315CrossRefGoogle Scholar
  23. 23.
    Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47CrossRefGoogle Scholar
  24. 24.
    Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95(2):300–312CrossRefGoogle Scholar
  25. 25.
    Rezwan K, Studart AR, Voros J, Gauckler LJ (2005) Change of ζ potential of biocompatible colloidal oxide particles upon adsorption of bovine serum albumin and lysozyme. J Phys Chem B 109(30):14469–14474CrossRefGoogle Scholar
  26. 26.
    Kato H, Fujita K, Horie M, Suzuki M, Nakamura A, Endoh S, Yoshida Y, Iwahashi H, Takahashi K, Kinugasa S (2010) Dispersion characteristics of various metal oxide secondary nanoparticles in culture medium for in vitro toxicology assessment. Toxicol in Vitro 24(3):1009–1018CrossRefGoogle Scholar
  27. 27.
    Lundqvist M, Sethson I, Jonsson BH (2004) Protein adsorption onto silica nanoparticles: conformational changes depend on the particles' curvature and the protein stability. Langmuir 20(24):10639–10647CrossRefGoogle Scholar
  28. 28.
    Schulze C, Kroll A, Lehr CM, Schafer UF, Becker K, Schnekenburger J, Isfort CS, Landsiedel R, Wohlleben W (2008) Not ready to use—overcoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology 2(2):51–61CrossRefGoogle Scholar
  29. 29.
    Shang W, Nuffer JH, Dordick JS, Siegel RW (2007) Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett 7(7):1991–1995CrossRefGoogle Scholar
  30. 30.
    Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20(16):6800–6807CrossRefGoogle Scholar
  31. 31.
    Kittler S, Greulich C, Gebauer JS, Diendorf J, Treuel L, Ruiz L, Gonzalez-Calbet JM, Vallet-Regi M, Zellner R, Koller M, Epple M (2010) The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 20(3):512–518CrossRefGoogle Scholar
  32. 32.
    Díaz B, Sánchez-Espinel C, Arruebo M, Faro J, de Miguel E, Magadán S, Yagüe C, Fernández-Pacheco R, Ibarra MR, Santamaría J, González-Fernández A (2008) Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 4(11):2025–2034CrossRefGoogle Scholar
  33. 33.
    Xing XL, He XX, Peng JF, Wang KM, Tan WH (2005) Uptake of silica-coated nanoparticles by HeLa cells. J Nanosci Nanotechnol 5(10):1688–1693CrossRefGoogle Scholar
  34. 34.
    Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD, Bandyopadhyay S, Teeguarden JG, Pounds JG, Thrall BD (2009) Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci 107(2):553–569CrossRefGoogle Scholar
  35. 35.
    Yu KO, Grabinski CM, Schrand AM, Murdock RC, Wang W, Gu BH, Schlager JJ, Hussain SM (2009) Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res 11(1):15–24CrossRefGoogle Scholar
  36. 36.
    Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055CrossRefGoogle Scholar
  37. 37.
    Stayton I, Winiarz J, Shannon K, Ma YF (2009) Study of uptake and loss of silica nanoparticles in living human lung epithelial cells at single cell level. Anal Bioanal Chem 394(6):1595–1608CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Daniela Drescher
    • 1
    • 2
  • Guillermo Orts-Gil
    • 3
  • Gregor Laube
    • 4
  • Kishore Natte
    • 3
  • Rüdiger W. Veh
    • 4
  • Werner Österle
    • 3
  • Janina Kneipp
    • 1
    • 2
  1. 1.BAM Federal Institute for Materials Research and TestingBerlinGermany
  2. 2.Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
  3. 3.BAM Federal Institute for Materials Research and TestingBerlinGermany
  4. 4.Institute of Integrative NeuroanatomyCharité - Universitätsmedizin BerlinBerlinGermany

Personalised recommendations