Analytical and Bioanalytical Chemistry

, Volume 401, Issue 3, pp 785–793 | Cite as

A review of external microbeams for ion beam analyses



Ion microbeam facilities are analytical tools with high spatial resolution exploiting MeV ion beams. The interactions of beam particles with atoms and nuclei of the target induce the emission of characteristic radiation, the energy of which provides signatures of the compositional and/or structural properties of the target; Ion-Beam Analysis (IBA) techniques, based on the detection of such radiation, enable characterisation of samples of interest, e.g. in material and earth sciences, cultural heritage, biology, medicine, and environmental studies. External beams, obtained by extracting the particles into the atmosphere through a thin window, have many attractive features, e.g. non-destructive/non-invasive analysis and ease of working, so many laboratories have dedicated beam-lines to ex-vacuo IBA analyses. External microprobes have made it possible to obtain probes in the micron range by adopting strong focusing lenses, ultra-thin windows for beam extraction, and short/ultra-short external path of beam particles in light gases; they have also made possible the use of new external IBA techniques, e.g. BS, ERDA, STIM, and IBIC. By adopting systems to raster scan the beam over the sample, imaging capabilities have also become available for ex-vacuo analysis. External scanning microprobes + IBA techniques have enabled the characterisation of samples with high spatial resolution, comparable with that achievable in-vacuum for thick samples, avoiding sample damage.


IBA analysis of a precious lapis lazuli artefact at the Florence external microbeam


External microbeam Ion-Beam Analysis Ionoluminescence PIGE Backscattering Spectrometry IBIC 


  1. 1.
    Jolly RK, Randers-Peherson G, Gupta SK, Buckle DC, Aceto H, Proc Third Conf. on Applications of Small Accelerators, Denton, Texas, 1974, NTIS Report CONF741040-PIGoogle Scholar
  2. 2.
    Seaman GC, Shane KC (1975) Nucl Instrum Method 126:473–474CrossRefGoogle Scholar
  3. 3.
    Calligaro T, Dran J-C, Ioannidou E, Moignard B, Pichon L, Salomon J (2000) Nucl Instrum Method B 161–163:328–333CrossRefGoogle Scholar
  4. 4.
    Watt F, Grime GW (1987) High-energy ion microbeams. Adam Hilger, BristolGoogle Scholar
  5. 5.
    Cookson JA (1979) Nucl Instrum Method 165:477–508CrossRefGoogle Scholar
  6. 6.
    Hamada N, Ni M, Funayama T, Sakashita T, Kobayashi Y (2008) Mutat Res 639:35–44Google Scholar
  7. 7.
    Gerardi S (2009) J Radiat Res 50(Suppl):A13–A20CrossRefGoogle Scholar
  8. 8.
    Meijer J, Stephan A, Adamczewski J, Reken H, Bukow HH, Rolfs C (1995) Nucl Instrum Method B 99:423–426CrossRefGoogle Scholar
  9. 9.
    Ryan CG, Jamieson DN (1999) Nucl Instrum Method B 158:997–1066Google Scholar
  10. 10.
    Dollinger G, Datzmann G, Hauptner A, Hertenberger R, Körner H-J, Reichart P, Volckaerts B (2003) Nucl Instrum Method B 210:6–13CrossRefGoogle Scholar
  11. 11.
    Randers-Pehrson G, Johnson GW, Marino SA, Xu Y, Dymnikov AD, Brenner DJ (2009) Nucl Instrum Method A 609:294–299CrossRefGoogle Scholar
  12. 12.
    Merchant MJ, Grime GW, Kirkby KJ, Webb R (2007) Nucl Instrum Method B 260:8–14CrossRefGoogle Scholar
  13. 13.
    Watt F, van Kan JA, Rajta I, Bettiol AA, Choo TF, Breese MBH, Osipowcz T (2003) Nucl Instrum Method B 210:14–20CrossRefGoogle Scholar
  14. 14.
    Grime GW, Dawson M, Marsh M, McArthur JD, Watt F (1991) Nucl Instrum Method B 54:353–362CrossRefGoogle Scholar
  15. 15.
    Moliere G (1948) Z Naturforsch 3a:78Google Scholar
  16. 16.
  17. 17.
    Enguita O, Fernandez-Jimenez MT, Garcıa G, Climent-Font A, Calderon T, Grime GW (2004) Nucl Instrum Method B 219–220:384–388CrossRefGoogle Scholar
  18. 18.
    Remazeilles C, Quillet V, Calligaro T, Dran J-C, Pichon L, Salomon J (2001) Nucl Instrum Method B 181:681–687CrossRefGoogle Scholar
  19. 19.
    Giuntini L, Massi M, Calusi S (2007) Nucl Instrum Method A 576:266–273CrossRefGoogle Scholar
  20. 20.
    Grassi N, Giuntini L, Massi M, Mandò PA (2007) Nucl Instrum Method B 256:712–718CrossRefGoogle Scholar
  21. 21.
    Chiari M, Del Carmine P, Garcìa Orellana I, Lucarelli F, Nava S, Paperetti L (2006) Nucl Instrum Method B 249:584–587CrossRefGoogle Scholar
  22. 22.
    Mandò PA (1994) Nucl Instrum Method B 85:815–823CrossRefGoogle Scholar
  23. 23.
    Calligaro T, Dran J-C, Hamon H, Moignard B, Salomon J (1998) Nucl Instrum Method B 136–138:339–343CrossRefGoogle Scholar
  24. 24.
    Kirby BJ, Legge GJF (1991) Nucl Instrum Method B 54:98–100CrossRefGoogle Scholar
  25. 25.
    Randers-Pehrson G, Johnson GW, Marino SA, Xua Y, Dymnikov AD, Brenner DJ (2009) Nucl Instrum Method A 609:294–299CrossRefGoogle Scholar
  26. 26.
    Ortega R, Devès G, Moretto Ph (2001) Nucl Instrum Method B 181:475–479CrossRefGoogle Scholar
  27. 27.
    Feng H, Yu Z, Chu PK (2006) Mater Sci Eng R 54:49–120CrossRefGoogle Scholar
  28. 28.
    Dran J-C, Salomon J, Calligaro T, Walter P (2004) Nucl Instrum Method B 219–220:7–15CrossRefGoogle Scholar
  29. 29.
    Mandò PA (2005) Nucl Phys A 751:393–408CrossRefGoogle Scholar
  30. 30.
    Respaldiza MA, Ager FJ, Carmona A, Ferrer J, García-León M, García-López J, García-Orellana I, Gómez-Tubío B, Morilla Y, Ontalba MA, Ortega-Feliu I (2008) Nucl Instrum Method B 266:2105–2109CrossRefGoogle Scholar
  31. 31.
    Perea A, Climent-Font A, Fernández-Jiménez M, Enguita O, Gutiérrez PC, Calusi S, Migliori A, Montero I (2006) Nucl Instrum Method B 249:638–641CrossRefGoogle Scholar
  32. 32.
    Migliori A, Grassi N, Mandò PA (2008) Nucl Instrum Method B 266:2339–2342CrossRefGoogle Scholar
  33. 33.
    Räisänen J, Anttila A (1982) Nucl Instrum Method 196:489–492CrossRefGoogle Scholar
  34. 34.
    Del Carmine P, Lucarelli F, Mandò PA, Pecchioli A (1993) Nucl Instrum Method B 75:480CrossRefGoogle Scholar
  35. 35.
    Calligaro T, McArthur JD, Salomon J (1996) Nucl Instrum Method B 109:125CrossRefGoogle Scholar
  36. 36.
    Neelmeijer C, Wagner W, Schramm HP (1996) Nucl Instrum Method B 118:338–345CrossRefGoogle Scholar
  37. 37.
    Kinomura A, Mokuno Y, Chayahara A, Tsubouchi N, Horino Y (2003) Nucl Instrum Method B 210:75–78CrossRefGoogle Scholar
  38. 38.
    Colombo E, Bosio A, Calusi S, Giuntini L, Lo Giudice A, Manfredotti C, Massi M, Olivero P, Romeo A, Romeo N, Vittone E (2009) Nucl Instrum Method B 267:2181–2184CrossRefGoogle Scholar
  39. 39.
    Lefèvre HW, Schofield RMS, Bench GS, Legge GJF (1991) Nucl Instrum Method B 54:363–370CrossRefGoogle Scholar
  40. 40.
    Yasuda K, Hai VH, Nomachi M, Sugaya Y, Yamamoto H (2007) Nucl Instrum Method B 260:207–212CrossRefGoogle Scholar
  41. 41.
    Grime GW, Abraham MH, Marsh MA (2001) Nucl Instrum Method B 181:66–70CrossRefGoogle Scholar
  42. 42.
    Mathis F, Moignard B, Pichon L, Dubreuil O, Salomon J (2005) Nucl Instrum Method B 240:532–538CrossRefGoogle Scholar
  43. 43.
    Komatsu H, Yamamoto H, Nomachi M, Yasuda K, Matsuda Y, Murata Y, Kijimura T, Sano H, Sakai T, Kamiya T (2007) Nucl Instrum Method B 260:201–206CrossRefGoogle Scholar
  44. 44.
    Nilsson C, Petriconi S, Reinert T, Butz T (2007) Nucl Instrum Method B 260:71–76CrossRefGoogle Scholar
  45. 45.
    Salomon J, Dran J-C, Guillou T, Moignard B, Pichon L, Walter P, Mathis F (2008) Nucl Instrum Method B 266:2273–2278CrossRefGoogle Scholar
  46. 46.
  47. 47.
    Ortega-Feliu I, Gómez-Tubío B, Ontalba Salamanca MÁ, Respaldiza MÁ, de la Bandera ML, Ovejero Zappino G (2007) Nucl Instrum Method B 260:329–335CrossRefGoogle Scholar
  48. 48.
    Zucchiatti A, Pascual C, Ynsa MD, Castelli L, Recio P, Criado E, Valle FJ, Climent-Font A (2008) J Eur Ceram Soc 28:757–762CrossRefGoogle Scholar
  49. 49.
  50. 50.
    Boni C, Cereda E, Braga Marcazzan GM, De Tomasi V (1988) Nucl Instrum Method 35:80CrossRefGoogle Scholar
  51. 51.
    Lucarelli F, Mandò PA, Nava S, Prati P, Zucchiatti A (2004) J Air Waste Manage Assoc 54:1372–1382Google Scholar
  52. 52.
    Calzolai G, Chiari M, Lucarelli F, Nava S, Portarena S (2010) Nucl Instrum Method B 268:1540–1545CrossRefGoogle Scholar
  53. 53.
    Sakai T, Kamiya T, Oikawa M, Sato T, Tanaka A, Ishii K (2002) Nucl Instrum Method B 190:271–275CrossRefGoogle Scholar
  54. 54.
    Yamamoto H, Nomachi M, Yasuda K, Iwami Y, Ebisu S, Komatsu H, Sakai T, Kamiya T (2007) Nucl Instrum Method B 260:194–200CrossRefGoogle Scholar
  55. 55.
    Komatsu H, Yamamoto H, Nomachi M, Yasuda K, Matsuda Y, Kinugawa M, Kijimura T, Sano H, Satou T, Oikawa S, Kamiya T (2009) Nucl Instrum Method B 267:2136–2139CrossRefGoogle Scholar
  56. 56.
    Spemann D, Jankuhn St, Vogt J, Butz T (2000) Nucl Instrum Method B 161–163:867–871CrossRefGoogle Scholar
  57. 57.
    Sha Y, Zhang P, Wang G, Zhang X, Wang X (2002) Nucl Instrum Method B 189:408–411CrossRefGoogle Scholar
  58. 58.
    Enguita O, Calderón T, Fernández-Jiménez MT, Beneitez P, Millan A, García G (2004) Nucl Instrum Method B 219–220:53–56CrossRefGoogle Scholar
  59. 59.
    Quaranta A, Salomon J, Dran J-C, Tonezzer M, Della Mea G (2007) Nucl Instrum Method B 254:289–294CrossRefGoogle Scholar
  60. 60.
    Calusi S, Colombo E, Giuntini L, Lo Giudice A, Manfredotti C, Massi M, Pratesi G, Vittone E (2008) Nucl Instrum Method B 266:2306–2310CrossRefGoogle Scholar
  61. 61.
    Lo Giudice A, Re A, Calusi S, Giuntini L, Massi M, Olivero P, Pratesi G, Albonico M, Conz E (2009) Anal Bioanal Chem 395:2211–2217CrossRefGoogle Scholar
  62. 62.
    Doyle BL (1983) Nucl Instrum Method 218:29–32CrossRefGoogle Scholar
  63. 63.
  64. 64.
    Reiche I, Castaing J, Calligaro T, Salomon J, Aucouturier M, Reinholz U, Weise H-P (2006) Nucl Instrum Method B 249:608–611CrossRefGoogle Scholar
  65. 65.
    Llabador Y, Moretto Ph (1998) Nuclear microprobes in the life sciences. World Scientific, SingaporeGoogle Scholar
  66. 66.
    Williams ET (1984) Nucl Instrum Method B 3:211CrossRefGoogle Scholar
  67. 67.
    Sugimoto A, Ishii K, Matsuyama S, Satoh T, Gotoh K, Yamazaki H, Akama C, Sato M, Sakai T, Kamiya T, Oikawa M, Saido M, Tanaka R (1999) Int J PIXE 9:151–160CrossRefGoogle Scholar
  68. 68.
    Kamiya T, Sakai T, Oikawa M, Satoh T, Ishii K, Sugimoto A, Matsuyama S (1999) Int J PIXE 9:217–225CrossRefGoogle Scholar
  69. 69.
    Chiari M, Migliori A, Mandò PA (2002) Nucl Instrum Method B 188:162–165CrossRefGoogle Scholar
  70. 70.
    Šmit Ž, Uršič M, Pelicon P, Trček-Pečak T, Šeme B, Smrekar A, Langus I, Nemec I, Kavkler K (2008) Nucl Instrum Method B 266:2047–2059CrossRefGoogle Scholar
  71. 71.
    Hietel B, Menzel N, Wittmaack K (1996) Nucl Instrum Method B 109/110:139–143CrossRefGoogle Scholar
  72. 72.
    Lill JO (1999) Nucl Instrum Method B 150:114–117CrossRefGoogle Scholar
  73. 73.
    Budnar M, Uršič M, Simčič J, Pelicon P, Kolar J, Šelih VS, Strlič M (2006) Nucl Instrum Method B 243:407–416CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Dipartimento di Fisica dell’Università and Istituto Nazionale di Fisica NucleareSezione di FirenzeFirenzeItaly

Personalised recommendations