Analytical and Bioanalytical Chemistry

, Volume 400, Issue 6, pp 1691–1704 | Cite as

Shaping and exploring the micro- and nanoworld using bipolar electrochemistry

  • Gabriel Loget
  • Alexander KuhnEmail author


Bipolar electrochemistry is a technique with a rather young history in the field of analytical chemistry. Being based on the polarization of a conducting object which is exposed to an external electric field, it allowed recently the development of new methods for controlled surface modification at the micro- and nanoscale and very original analytical applications. Using bipolar electrodes, analyte separation and detection becomes possible based on miniaturized systems. Moreover, the modified objects that can be created with bipolar electrochemistry could find applications as key components for detection systems. In this contribution, the principles of bipolar electrochemistry will be reviewed, as well as recent developments that focus on the modification of objects at the nano- and microscale and their potential application in miniaturized analytical systems.


The polarization of an object in an external electric field leads to bipolar electrochemical reactions. The advantages of bipolar electrochemistry as an emerging original tool in the field of analytical and bioanalytical chemistry are reviewed, with a special focus on the latest developments.


Bipolar electrochemistry Contactless electrodeposition Contactless detection Electrogenerated electrochemiluminescence Janus particles 



Bipolar electrode


Boron dipyrromethene


Capillary-assisted bipolar electrodeposition


Capillary electrophoresis


Conctactless electrofunctionalization


Carbon nanofiber


Carbon nanopipe


Carbon nanotube


Carbon tube




Electric field


Electroosmotic flow


Environmental scanning electron microscope


Horseradish peroxidase


Multiwall carbon nanotube






Self-assembled monolayer


Spatially coupled bipolar electrochemistry


Transmission electron microscope







This work is part of the CUBIHOLE Project funded by the European NanoSci-Era+ action under contract ANR-08-NSCI-008-01. We would like to thank the authors of the publications that have been used for the figures.


  1. 1.
    Fleischmann M, Ghoroghchian J, Rolison D, Pons S (1986) Electrochemical behavior of dispersions of spherlcal ultramicroelectrodes. J Phys Chem 90:6392–6400CrossRefGoogle Scholar
  2. 2.
    Kazdobin K, Shvab N, Tsapakh S (2000) Scaling-up of fluidized-bed electrochemical reactors. Chem Eng J 79:203–209CrossRefGoogle Scholar
  3. 3.
    Matsuno Y, Tsutsumi A, Yoshida K (1997) Improvement in electrode performance of three-phase fluidized-bed electrodes for an alkaline fuel cell cathode. J Hydrogen Energy 22:615–620CrossRefGoogle Scholar
  4. 4.
    Wang Y, Hernandez RM, Bartlett DJ, Bingham JM, Kline TR, Sen A, Mallouk TE (2006) Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22:10451–10456CrossRefGoogle Scholar
  5. 5.
    Wang J, Manesh KM (2010) Motion control at the nanoscale. Small 6:338–345CrossRefGoogle Scholar
  6. 6.
    Mano N, Heller A (2005) Bioelectrochemical propulsion. J Am Chem Soc 127:11574–11575CrossRefGoogle Scholar
  7. 7.
    Smotkin E, Bard AJ, Campion A, Fox MA, Mallouk T, Webber SE, White JM (1986) Bipolar TiO2/Pt semiconductor photoelectrodes and multielectrode arrays for unassisted photolytic water splitting. J Phys Chem 90:4604–4607CrossRefGoogle Scholar
  8. 8.
    Smotkin ES, Cenera-March S, Bard AJ, Campion A, Fox MA, Mallouk T, Webber SE, White JM (1987) Bipolar CdSe/CoS semiconductor photoelectrode arrays for unassisted photolytic water splitting. J Phys Chem 91:6–8CrossRefGoogle Scholar
  9. 9.
    Mavré F, Anand RK, Laws DR, Chow KF, Chang BY, Crooks JA, Crooks RM (2010) Bipolar electrodes: a useful tool for concentration, separation, and detection of analytes in microelectrochemical systems. Anal Chem 82:8766–8774CrossRefGoogle Scholar
  10. 10.
    Duval JFL, Van Leeuwen HP, Cecilia J, Galceran J (2003) Rigorous analysis of reversible faradaic depolarization processes in the electrokinetics of the metal/electrolyte solution interface. J Phys Chem B 107:6782–6800CrossRefGoogle Scholar
  11. 11.
    Duval JFL, Minor M, Cecilia J, Van Leeuwen HP (2003) Coupling of lateral electric field and transversal faradaic processes at the conductor/electrolyte solution interface. J Phys Chem B 107:4143–4155CrossRefGoogle Scholar
  12. 12.
    Plana D, Jones FGE, Dryfe RAW (2010) The voltammetric response of bipolar cells: reversible electron transfer. J Electroanal Chem 646:107–113CrossRefGoogle Scholar
  13. 13.
    Duval J, Kleijn JM, Van Leeuwen HP (2001) Bipolar electrode behaviour of the aluminium surface in a lateral electric field. J Electroanal Chem 505:1–11CrossRefGoogle Scholar
  14. 14.
    Ramakrishnan S, Shannon C (2010) Display of solid-state materials using bipolar electrochemistry. Langmuir 26:4602–4606CrossRefGoogle Scholar
  15. 15.
    Ulrich C, Andersson O, Nyholm L, Björefors F (2009) Potential and current density distributions at electrodes intended for bipolar patterning. Anal Chem 81:453–459CrossRefGoogle Scholar
  16. 16.
    Ulrich C, Andersson O, Nyholm L, Björefors F (2008) Formation of molecular gradients on bipolar electrodes. Angew Chem Int Ed 47:3034–3036CrossRefGoogle Scholar
  17. 17.
    Bradley JC, Chen HM, Crawford J, Eckert J, Ernazarova K, Kurzeja T, Lin M, McGee M, Nadler W, Stephens SG (1997) Creating electrical contacts between metal particles using directed electrochemical growth. Nature 389:268–271CrossRefGoogle Scholar
  18. 18.
    Bradley JC, Crawford J, Ernazarova K, McGee M, Stephens SG (1997) Wire formation on circuit boards using spatially coupled bipolar electrochemistry. Adv Mater 9:1168–1171CrossRefGoogle Scholar
  19. 19.
    Bradley JC, Ma Z, Clark E, Crawford J, Stephens SG (1999) Programmable hard-wiring of circuitry using spatially coupled bipolar electrochemistry. J Electrochem Soc 146:194–198CrossRefGoogle Scholar
  20. 20.
    Bradley JC, Crawford J, McGee M, Stephens SG (1998) A contactless method for the directed formation of submicrometer copper wires. J Electrochem Soc 145:L45–L47CrossRefGoogle Scholar
  21. 21.
    Bradley JC (1998) US patent 6,120,669Google Scholar
  22. 22.
    Bradley JC, Ma Z, Stephens SG (1999) Electric field directed construction of diodes using free-standing three-dimensional components. Adv Mater 11:374–378CrossRefGoogle Scholar
  23. 23.
    Bradley JC, Ma Z (1998) Contactless electrodeposition of palladium catalysts. Angew Chem Int Ed 38:1663–1666CrossRefGoogle Scholar
  24. 24.
    Bradley JC, Babu S, Mittal A, Ndungu P, Carroll B, Samuel B (2001) Pulsed bipolar electrodeposition of palladium onto graphite powder. J Electrochem Soc 148:C647–C651CrossRefGoogle Scholar
  25. 25.
    Bradley JC, Babu S, Ndungu P (2005) Contacless tip-selective electrodeposition of palladium onto carbon nanotubes and nanofibers. Fullerenes Nanotubes Carbon Nanostruct 13:227–237CrossRefGoogle Scholar
  26. 26.
    Babu S, Ndungu P, Bradley JC, Rossi MP, Gogotsi Y (2005) Guiding water into carbon nanopipes with the aid of bipolar electrochemistry. Microfluid Nanofluid 1:284–288CrossRefGoogle Scholar
  27. 27.
    Warakulwit C, Nguyen T, Majimel J, Delville MH, Lapeyre V, Garrigue P, Ravaine V, Limtrakul J, Kuhn A (2008) Dissymmetric carbon nanotubes by bipolar electrochemistry. Nano Lett 8:500–504CrossRefGoogle Scholar
  28. 28.
    Loget G, Larcade G, Lapeyre V, Garrigue P, Warakulwit C, Limtrakul J, Delville MH, Ravaine V, Kuhn A (2010) Single point electrodeposition of nickel for the dissymmetric decoration of carbon tubes. Electrochim Acta 55:8116–8120CrossRefGoogle Scholar
  29. 29.
    Fattah Z, Loget G, Lapeyre V, Garrigue P, Warakulwit C, Limtrakul J, Bouffier L, Kuhn A (2011) Straightforward single-step generation of microswimmers by bipolar electrochemistry. Electrochim Acta. doi: 10.1016/j.electacta.2011.01.048
  30. 30.
    Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153CrossRefGoogle Scholar
  31. 31.
    Bouchet A, Descamps E, Mailley P, Livache T, Chatelain F, Haguet V (2009) Contactless electrofunctionalization of a single pore. Small 5:2297–2303CrossRefGoogle Scholar
  32. 32.
    Loget G, Kuhn A (2010) Propulsion of microobjects by dynamic bipolar self-regeneration. J Am Chem Soc 132:15918–15919CrossRefGoogle Scholar
  33. 33.
    Bradley JC, Babu S, Carroll B, Mittal A (2002) A study of spatially coupled bipolar electrochemistry on the sub-micrometer scale: colloidal particles on surfaces and cylinders in nuclear-track etched membranes. J Electroanal Chem 522:75–85CrossRefGoogle Scholar
  34. 34.
    Wei W, Xue G, Yeung ES (2002) One-step concentration of analytes based on dynamic change in pH in capillary zone electrophoresis. Anal Chem 74:934–940CrossRefGoogle Scholar
  35. 35.
    Dhopeshwarkar R, Hlushkou D, Nguyen M, Tallarek U, Crooks RM (2008) Electrokinetics in microfluidic channels containing a floating electrode. J Am Chem Soc 130:10480–10481CrossRefGoogle Scholar
  36. 36.
    Hlushkou D, Perdue RK, Dhopeshwarkar R, Crooks RM, Tallarek U (2009) Electric field gradient focusing in microchannels with embedded bipolar electrode. Lab Chip 9:1903–1913CrossRefGoogle Scholar
  37. 37.
    Laws DR, Hlushkou D, Perdue RK, Tallarek U, Crooks RM (2009) Bipolar electrode focusing: simultaneous concentration enrichment and separation in a microfluidic channel containing a bipolar electrode. Anal Chem 81:8923–8929CrossRefGoogle Scholar
  38. 38.
    Klett O, Nyholm L (2003) Separation high voltage field driven on-chip amperometric detection in capillary electrophoresis. Anal Chem 75:1245–1250CrossRefGoogle Scholar
  39. 39.
    Ordeig O, Godino N, Del Campo J, Muñoz FX, Nikolajeff F, Nyholm L (2008) On-chip electric field driven electrochemical detection using a poly(dimethylsiloxane) microchannel with gold microband electrodes. Anal Chem 80:3622–3632CrossRefGoogle Scholar
  40. 40.
    Chow KF, Chang BY, Zaccheo BA, Mavré F, Crooks RM (2010) A sensing platform based on electrodissolution of a Ag bipolar electrode. J Am Chem Soc 132:9228–9229CrossRefGoogle Scholar
  41. 41.
    Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506–2553CrossRefGoogle Scholar
  42. 42.
    Fosdick SE, Crooks JA, Chang BY, Crooks RM (2010) Two-dimensional bipolar electrochemistry. J Am Chem Soc 132:9226–9227CrossRefGoogle Scholar
  43. 43.
    Arora A, Eijkel JCT, Morf WE, Manz A (2001) A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device. Anal Chem 73:3282–3288CrossRefGoogle Scholar
  44. 44.
    Zhan W, Alvarez J, Crooks RM (2002) Electrochemical sensing in microfluidic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions. J Am Chem Soc 124:13265–13270CrossRefGoogle Scholar
  45. 45.
    Chow KF, Mavré F, Crooks JA, Chang BY, Crooks RM (2009) A large-scale, wireless electrochemical bipolar electrode microarray. J Am Chem Soc 131:8364–8365CrossRefGoogle Scholar
  46. 46.
    Chow KF, Mavré F, Crooks RM (2008) Wireless electrochemical DNA microarray sensor. J Am Chem Soc 130:7544–7545CrossRefGoogle Scholar
  47. 47.
    Mavré F, Chow KF, Sheridan E, Chang BY, Crooks JA, Crooks RM (2009) A theoretical and experimental framework for understanding electrogenerated chemiluminescence (ECL) emission at bipolar electrodes. Anal Chem 81:6218–6225CrossRefGoogle Scholar
  48. 48.
    Zhan W, Crooks RM (2003) Microelectrochemical logic circuits. J Am Chem Soc 125:9934–9935CrossRefGoogle Scholar
  49. 49.
    Chang BY, Crooks JA, Chow KF, Mavré F, Crooks RM (2010) Design and operation of microelectrochemical gates and integrated circuits. J Am Chem Soc 132:15404–15409CrossRefGoogle Scholar
  50. 50.
    Chang BY, Mavré F, Chow KF, Crooks JA, Crooks RM (2010) Snapshot voltammetry using a triangular bipolar microelectrode. Anal Chem 82:5317–5322CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Université de Bordeaux, IPB, UMR 5255, ENSCBPPessacFrance

Personalised recommendations