Analytical and Bioanalytical Chemistry

, Volume 400, Issue 6, pp 1613–1618 | Cite as

Task-specific microextractions using ionic liquids

Trends

Abstract

Ionic liquids (ILs) have been the focus of many scientific investigations including the field of analytical microextractions. ILs have many advantages over traditional organic solvents making them excellent candidates as extraction media for a variety of microextraction techniques. Many physical properties of ILs can be varied, and the structural design and make-up can be tuned to impart desired functionality for enhancement of analyte extraction selectivity, efficiency, and sensitivity. This paper provides a brief overview of ionic liquids and highlights trends in three important sample-preparation techniques, namely, single drop microextraction, solid-phase microextraction, and dispersive liquid–liquid microextraction in terms of performing task-specific extractions using these highly versatile solvents.

Keywords

Ionic liquids Single drop microextraction Solid-phase microextraction Dispersive liquid–liquid microextraction Sample preparation 

Notes

Acknowledgements

J.L.A. acknowledges funding from the Analytical and Surface Chemistry Program in the Division of Chemistry and the Separation and Purification Processes Program in the Chemical, Environmental, Bioengineering, and Transport Systems Division from the National Science Foundation for a CAREER grant (CHE-0748612).

References

  1. 1.
    Welton T (1999) Chem Rev 99:2071–2083CrossRefGoogle Scholar
  2. 2.
    Carmichael AJ, Seddon KR (2000) J Phys Org Chem 13:591–595CrossRefGoogle Scholar
  3. 3.
    Swatloski RP, Holbrey JD, Rogers RD (2003) Green Chem 5:361–363CrossRefGoogle Scholar
  4. 4.
    Liu S, Dasgupta PK (1995) Anal Chem 67:2042–2049CrossRefGoogle Scholar
  5. 5.
    Jeannot MA, Cantwell FF (1996) Anal Chem 68:2236–2240CrossRefGoogle Scholar
  6. 6.
    He Y, Lee HK (1997) Anal Chem 69:4634–4640CrossRefGoogle Scholar
  7. 7.
    Liu JF, Jiang GB, Chi YG, Cai YQ, Zhou QX, Hu JT (2003) Anal Chem 75:5870–5876CrossRefGoogle Scholar
  8. 8.
    Yao C, Pitner W, Anderson JL (2009) Anal Chem 81:5054–5063CrossRefGoogle Scholar
  9. 9.
    Ignat’ev NV, Welz-Biermann U, Kucheryna A, Bissky G, Willner H (2005) J Fluorine Chem 126:1150–1159CrossRefGoogle Scholar
  10. 10.
    Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M (2008) Anal Chem 80:793–800CrossRefGoogle Scholar
  11. 11.
    Arthur CL, Pawliszyn J (1990) Anal Chem 62:2145–2148CrossRefGoogle Scholar
  12. 12.
    Spietelun A, Pilarczyk M, Kloskowski A, Namieśnik J (2010) Chem Soc Rev 39:4524–4537CrossRefGoogle Scholar
  13. 13.
    Liu J-F, Li N, Jiang G-B, Liu J-M, Jönsson JÅ, Wen M-J (2005) J Chromatogr A 1066:27–32CrossRefGoogle Scholar
  14. 14.
    Hsieh Y-N, Huang P-C, Sun I-W, Whang T-J, Hsu C-Y, Huang H-H, Kuei C-H (2006) Anal Chim Acta 557:321–328CrossRefGoogle Scholar
  15. 15.
    Zhao F, Meng Y, Anderson JL (2008) J Chromatogr A 1208:1–9CrossRefGoogle Scholar
  16. 16.
    Meng Y, Pino V, Anderson JL (2009) Anal Chem 81:7107–7112CrossRefGoogle Scholar
  17. 17.
    Zhao Q, Wajert JC, Anderson JL (2010) Anal Chem 82:707–713CrossRefGoogle Scholar
  18. 18.
    He Y, Pohl J, Engel R, Rothman L, Thomas M (2009) J Chromatogr A 1216:4824–4830CrossRefGoogle Scholar
  19. 19.
    Davis JH (2004) Chem Lett 9:1072–1073CrossRefGoogle Scholar
  20. 20.
    Bates ED, Mayton RD, Ntai I, Davis JH (2002) J Am Chem Soc 124:926–927CrossRefGoogle Scholar
  21. 21.
    Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9CrossRefGoogle Scholar
  22. 22.
    Zhou Q, Bai H, Xie G, Xiao J (2008) J Chromatogr A 1177:43–49CrossRefGoogle Scholar
  23. 23.
    Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) J Chromatogr A 1216:885–891CrossRefGoogle Scholar
  24. 24.
    Baghdadi M, Shemirani F (2009) Anal Chim Acta 634:186–191CrossRefGoogle Scholar
  25. 25.
    Yao C, Anderson JL (2009) Anal Bioanal Chem 395:1491–1502CrossRefGoogle Scholar
  26. 26.
    Smiglak M, Metlen A, Rogers RD (2007) Acc Chem Res 40:1182–1192CrossRefGoogle Scholar
  27. 27.
    Forsyth M, Neil WC, Howlett PC, Macfarlane DR, Hinton BRW, Rocher N, Kemp TF, Smith ME (2009) ACS Appl Mater Interfaces 1:1045–1052CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of ChemistryThe University of ToledoToledoUSA

Personalised recommendations