Analytical and Bioanalytical Chemistry

, Volume 400, Issue 9, pp 2763–2773 | Cite as

Raman spectroscopic detection of physiology changes in plasmid-bearing Escherichia coli with and without antibiotic treatment

  • Angela Walter
  • Martin Reinicke
  • Thomas Bocklitz
  • Wilm Schumacher
  • Petra Rösch
  • Erika Kothe
  • Jürgen Popp
Original Paper


Bacterial resistances against antibiotics are increasingly problematic for medical treatment of pathogenic bacteria, e.g., in hospitals. Resistances are, among other genes, often encoded on plasmids which can be transmitted between bacteria not only within one species, but also between different species, genera, and families. The plasmid pDrive is transformed into bacteria of the model strain Escherichia coli DH5α. Within this investigation, we applied micro-Raman spectroscopy with two different excitation wavelengths in combination with support vector machine (SVM) and linear discriminant analysis (LDA) to differentiate between bacterial cultures according to their cultural plasmid content. Recognition rates of about 92% and 90% are achieved by Raman excitation at 532 and 244 nm, respectively. The SVM loadings reveal that the pDrive transformed bacterial cultures exhibit a higher DNA content compared to the untransformed cultures. To elucidate the influence of the antibiotic, ampicillin-treated cultures are also comprised within this study and are classified with rates of about 97% and 100% for 532 and 244 nm Raman excitation, respectively. The Raman spectra recorded with 532 nm excitation wavelength show differences of the secondary protein structure and enhanced stress-related respiration rates for the ampicillin-treated cultures. Independent cultural replicates of either ampicillin-challenged or non-challenged cultures are successfully identified with identification rates of over 90%.


The plasmid content of bacteria is directly evaluated by means of Raman spectroscopy


Raman spectroscopy Antibiotic resistance Plasmids 



We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (Graduiertenkolleg GK 1257 “Alteration and element mobility at the microbe-mineral interface” in the frame of the Jena School of Microbial Communication and Po563/7-2).

Supplementary material

216_2011_4819_MOESM1_ESM.pdf (265 kb)
ESM 1 (PDF 265 kb)


  1. 1.
    Schlegel GH (1992) Allgemeine Mikrobiologie, 7th edn. Thieme, StuttgartGoogle Scholar
  2. 2.
    Ream W (1989) Annu Rev Phytopathol 27:583–618CrossRefGoogle Scholar
  3. 3.
    Lilley AK, Bailey MJ (1997) Appl Environ Microbiol 63:1577–1583Google Scholar
  4. 4.
    Wang RF, Cao WW, Cerniglia CEJ (1997) Appl Microbiol 83:727–736CrossRefGoogle Scholar
  5. 5.
    Maquelin K, Choo-Smith LP, Kirschner C, Ngo-Thi NA, Naumann D, Puppels GJ (2002) Handbook of Vibrational Spectroscopy. In: Chalmers JM, Griffiths PR (eds), vol 5. Wiley, Chichester, pp 3308Google Scholar
  6. 6.
    Sadovskaya I, Vinogradov E, Li J, Jabbouri S (2004) Carbohydr Res 339:1467–1473CrossRefGoogle Scholar
  7. 7.
    Hahn H, Falke D, Kaufmann SHE, Ullmann U (2005) Medizinische Mikrobiologie und Infektiologie, 5th edn. Springer, HeidelbergCrossRefGoogle Scholar
  8. 8.
    Riou JY, Caugant DA, Selander RK, Poolman JT, Guibourdenche M, Collatz E (1991) Eur J Clin Microbiol Infect Dis 10:405–409CrossRefGoogle Scholar
  9. 9.
    Kharlamenko VI, Kiyashko SI, Imbs AB, Vyshkvartzev DI (2001) Mar Ecol Prog Ser 220:103–117CrossRefGoogle Scholar
  10. 10.
    Kilic NK, Stensballe A, Otzen DE, Doenmez G. Bioresour Technol 101:2134–2140Google Scholar
  11. 11.
    Baena JR, Lendl B (2004) Curr Opin Chem Biol 8:534–539CrossRefGoogle Scholar
  12. 12.
    Schrader B, Dippel B, Erb I, Keller S, Lochte T, Schulz H, Tatsch E, Wessel SJ (1999) Mol Struct 480–481:21–32CrossRefGoogle Scholar
  13. 13.
    Schweitzer-Stenner RJ (2005) Raman Spectrosc 36:276–278CrossRefGoogle Scholar
  14. 14.
    Walter A, Erdmann S, Bocklitz T, Jung E-M, Vogler N, Akimov D, Dietzek B, Rösch P, Kothe E, Popp J (2010) Analyst 135:908–917CrossRefGoogle Scholar
  15. 15.
    Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) Chemphyschem 8:124–137CrossRefGoogle Scholar
  16. 16.
    Stöckel S, Meisel S, Böhme R, Elschner M, Rösch P, Popp JJ (2009) Raman Spectrosc 40:1469–1477CrossRefGoogle Scholar
  17. 17.
    Tripathi A, Jabbour RE, Treado PJ, Neiss JH, Nelson MP, Jensen JL, Snyder AP (2008) Appl Spectrosc 62:1–9CrossRefGoogle Scholar
  18. 18.
    Schuster KC, Urlaub E, Gapes JRJ (2000) Microbiol Meth 42:29–38CrossRefGoogle Scholar
  19. 19.
    Schuster KC, Reese I, Urlaub E, Gapes JR, Lendl B (2000) Anal Chem 72:5529–5534CrossRefGoogle Scholar
  20. 20.
    Rösch P, Harz M, Schmitt M, Peschke K-D, Ronneberger O, Burkhardt H, Motzkus H-W, Lankers M, Hofer S, Thiele H, Popp J (2005) Appl Environ Microbiol 71:1626–1637CrossRefGoogle Scholar
  21. 21.
    Krause M, Radt B, Rösch P, Popp JJ (2007) Raman Spectrosc 38:369–372CrossRefGoogle Scholar
  22. 22.
    Harz M, Kiehntopf M, Stöckel S, Rösch P, Straube E, Deufel T, Popp J (2009) J Biophotonics 2:70–80CrossRefGoogle Scholar
  23. 23.
    Tarcea N, Harz M, Rösch P, Frosch T, Schmitt M, Thiele H, Hochleitner R, Popp J (2007) Spectrochim Acta A 68A:1029–1035Google Scholar
  24. 24.
    Gaus K, Rösch P, Petry R, Peschke KD, Ronneberger O, Burkhardt H, Baumann K, Popp J (2006) Biopolymers 82:286–290CrossRefGoogle Scholar
  25. 25.
    Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Holzgrabe U, Schmitt M, Popp JJ (2007) Phys Chem 111:2898–2906Google Scholar
  26. 26.
    Lopez-Diez EC, Winder CL, Ashton L, Currie F, Goodacre R (2005) Anal Chem 77:2901–2906CrossRefGoogle Scholar
  27. 27.
    Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, Puppels GJJ (2002) Microbiol Meth 51:255–271CrossRefGoogle Scholar
  28. 28.
    Moritz TJ, Taylor DS, Polage CR, Krol DM, Lane SM, Chan JW (2010) Anal Chem 82:2703–2710CrossRefGoogle Scholar
  29. 29.
    Serban D, Benevides JM, Thomas GJ Jr (2002) Biochemistry 41:847–853CrossRefGoogle Scholar
  30. 30.
    Taylor RG, Walker DC, McInnes RR (1993) Nucleic Acids Res 21:1677–1678CrossRefGoogle Scholar
  31. 31.
    Sambrook JF, Russell DW (Eds) (2000) Molecular cloning: a laboratory manual, third editionGoogle Scholar
  32. 32.
    The R Development Core Team (2009) R: a Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0Google Scholar
  33. 33.
    Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR (1988) Nucl Instrum Methods Phys Res Sect B B34:396–402CrossRefGoogle Scholar
  34. 34.
    Fearn T (2002) Handbook of Vibrational Spectroscopy. In:Chalmers JM, Griffiths PR(eds) Wiley, Chichester, vol 3, pp 2086Google Scholar
  35. 35.
    Cortes C, Vapnik V (1995) Mach Learn 20:273–297Google Scholar
  36. 36.
    Ivanciuc O, Lipkowitz KB, Cundari TR (eds) (2007) Wiley-VCH, Wiley. pp 291–400Google Scholar
  37. 37.
    Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machinesGoogle Scholar
  38. 38.
    Movasaghi Z, Rehman S, Rehman IU (2007) Appl Spectrosc Rev 42:493–541CrossRefGoogle Scholar
  39. 39.
    Harz M, Claus RA, Bockmeyer CL, Baum M, Rösch P, Kentouche K, Deigner HP, Popp J (2006) Biopolymers 82:317–324CrossRefGoogle Scholar
  40. 40.
    Kitagawa T, Kyogoku Y, Iizuka T, Ikeda-Saito M, Yamanaka TJ (1975) Biochem 78:719–728Google Scholar
  41. 41.
    Nelson WH, Manoharan R, Sperry JF (1991) Appl Spectrosc Rev 27:67–124CrossRefGoogle Scholar
  42. 42.
    Frushour BG, Koenig JL (1974) Biopolymers 13:455–474CrossRefGoogle Scholar
  43. 43.
    Benveniste R, Davies J (1973) Annu Rev Biochem 42:471–506CrossRefGoogle Scholar
  44. 44.
    Rimpler H (1999) In Biogene Arzneistoffe; Deutscher Apotheker Verlag, StuttgartGoogle Scholar
  45. 45.
    Chifiriuc M-C, Ditu L-M, Banu O, Bleotu C, Dracea O, Bucur M, Larion C, Israil Anca M, Lazar V (2009) Roum Arch Microbiol Immunol 68:27–33Google Scholar
  46. 46.
    Deneve C, Bouttier S, Dupuy B, Barbut F, Collignon A, Janoir C (2009) Antimicrob Agents Chemother 53:5155–5162CrossRefGoogle Scholar
  47. 47.
    Lopez E, Blazquez J (2009) Antimicrob Agents Chemother 53:3411–3415CrossRefGoogle Scholar
  48. 48.
    Craig WS, Gaber BPJ (1977) Am Chem Soc 99:4130–4134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Angela Walter
    • 1
  • Martin Reinicke
    • 2
  • Thomas Bocklitz
    • 1
  • Wilm Schumacher
    • 1
  • Petra Rösch
    • 1
  • Erika Kothe
    • 2
  • Jürgen Popp
    • 1
    • 3
  1. 1.Institut für Physikalische Chemie, Friedrich-Schiller-UniversitätJenaGermany
  2. 2.Institut für Mikrobiologie, Friedrich-Schiller-UniversitätJenaGermany
  3. 3.Institut für Photonische TechnologienJenaGermany

Personalised recommendations