Analytical and Bioanalytical Chemistry

, Volume 400, Issue 10, pp 3303–3313 | Cite as

Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy

  • W. Q. Lei
  • J. El Haddad
  • V. Motto-Ros
  • N. Gilon-Delepine
  • A. Stankova
  • Q. L. Ma
  • X. S. Bai
  • L. J. Zheng
  • H. P. Zeng
  • J. Yu
Original Paper

Abstract

Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

Keywords

LIBS CF-LIBS ICP-AES Matrix effect Milk powder 

Notes

Acknowledgments

The authors thank the French Rhone-Alps Region for their support through the CMIRA international collaboration program for the French-Chinese Joint Laboratory for Laser Physics and Applications (JILLPA).

References

  1. 1.
    Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. Wiely, ChichesterCrossRefGoogle Scholar
  2. 2.
    Miziolek AW, Palleschi V, Schechter I (eds) (2006) Laser-induced breakdown spectroscopy: fundamentals and applications. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Cremers DA, Chinni RC (2009) Laser-induced breakdown spectroscopy—capabilities and limitations. Appl Spectrosc Rev 44:457–506CrossRefGoogle Scholar
  4. 4.
    Gaudiuso R, Dell’Aglio M, De Pascale O, Senesi GS, De Giacomo A (2010) Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results. Sensors 10:7434–7468CrossRefGoogle Scholar
  5. 5.
    Corsi M, Cristoforetti G, Palleschi V, Salvetti A, Tognoni E (2001) A fast and accurate method for the determination of precious alloys caratage by laser induced plasma spectroscopy. Eur Phys J D 13:373–377CrossRefGoogle Scholar
  6. 6.
    Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V et al (2002) A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy. Spectrochim Acta B 57:339–353CrossRefGoogle Scholar
  7. 7.
    Gornushkin IB, Anzano JM, King LA, Smith BW, Omenetto N et al (1999) Curve of growth methodology applied to laser-induced plasma emission spectroscopy. Spectrochim Acta B 54:491–503CrossRefGoogle Scholar
  8. 8.
    Mohamed WTY (2008) Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera. Opt Laser Technol 40:30–38CrossRefGoogle Scholar
  9. 9.
    Ciucci A, Corsi M, Palleschi V, Rastelli S, Salvetti A et al (1999) New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl Spectrosc 53:960–964CrossRefGoogle Scholar
  10. 10.
    Fornarini L, Colao F, Fantoni R, Lazic V, Spizzicchino V (2005) Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach. Spectrochim Acta B 60:1186–1201CrossRefGoogle Scholar
  11. 11.
    Herrera K, Tognoni E, Omenetto N, Gornushkin IB, Smith BW et al (2009) Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions. J Anal At Spectrom 24:426–438CrossRefGoogle Scholar
  12. 12.
    Portnov A, Rosenwaks S, Bar I (2003) Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air. Appl Opt 42:2835–2842CrossRefGoogle Scholar
  13. 13.
    Barbini R, Colao F, Fantoni R, Palucci A, Ribezzo S et al (1997) Semi-quantitative time resolved LIBS measurements. Appl Phys B 65:101–107CrossRefGoogle Scholar
  14. 14.
    Juvé V, Portelli R, Boueri M, Baudelet M, Yu J (2008) Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy. Spectrochim Acta B 63:1047–1053CrossRefGoogle Scholar
  15. 15.
    Pandhija S, Rai NK, Rai AK, Thakur SN (2010) Contaminant concentration in environment samples using LIBS and CF-LIBS. Appl Phys B 98:231–241CrossRefGoogle Scholar
  16. 16.
    Corsi M, Cristoforetti G, Hidalgo M, Legnaioli S, Palleschi V (2003) Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis. Appl Opt 42:6133–6137CrossRefGoogle Scholar
  17. 17.
    Senesi GS, Dell’Aglio M, Gaudiuso R, De Giacomo A, Zaccone C et al (2009) Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Environ Res 109:413–420CrossRefGoogle Scholar
  18. 18.
    Eppler AS, Cremers DA, Hickmott DD, Ferris MJ, Koskelo AC (1996) Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy. Appl Spectrosc 50:1175–1181CrossRefGoogle Scholar
  19. 19.
    Gornushkin SI, Gornushkin IB, Anzano JM, Smith BW, Winefordner JD (2002) Effective normalization technique for correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples. Appl Spectrosc 56:433–436CrossRefGoogle Scholar
  20. 20.
    Tognoni E, Cristoforetti G, Legnaioli S, Palleschi V (2010) Calibration-free laser-induced breakdown spectroscopy: state of the art. Spectrochim Acta B 65:1–14CrossRefGoogle Scholar
  21. 21.
    Burakov VS, Kiris VV, Naumenkov PA, Raikov SN (2004) Calibration-free laser spectral analysis of glasses and copper alloys. J Appl Spectrosc 71:740–746CrossRefGoogle Scholar
  22. 22.
    Singh VK, Singh V, Rai AK, Thakur SN, Rai PK, Singh JP (2008) Quantitative analysis of gallstones using laser-induced breakdown spectroscopy. Appl Opt 47:G38–G47CrossRefGoogle Scholar
  23. 23.
    Praher B, Palleschi V, Viskup V, Heitz J, Pedarnig JD JD (2010) Calibration free laser-induced breakdown spectroscopy of oxide materials, Spectrochim. Acta B 65:671–679CrossRefGoogle Scholar
  24. 24.
    De Giacomo A, Dell’Aglio M, De Pascale O, Longo S, Capitelli M (2007) Laser induced breakdown spectroscopy on meteorites. Spectrochim Acta B 62:1606–1611CrossRefGoogle Scholar
  25. 25.
    Herrera K, Tognoni E, Smith BW, Omenetto N, Winefordner JD (2009) Semiquantitative analysis of metal alloys, brass and soil samples by calibration-free laser-induced breakdown spectroscopy: recent results and considerations. J Anal At Spectrom 24:413–425CrossRefGoogle Scholar
  26. 26.
    Lei WQ, Mottoros V, Boueri M, Ma QL, Zhang DC et al (2009) Time-resolved characterization of laser-induced plasma from fresh potatoes. Spectrochim Acta B 64:891–898CrossRefGoogle Scholar
  27. 27.
    Schramel P (1983) Consideration of inductively coupled plasma spectroscopy for trace element analysis in the bio-medical and environmental fields. Spectrochim Acta B 38:199–206CrossRefGoogle Scholar
  28. 28.
    Nobrega JA, Gelinas Y, Krushevska A (1997) Direct determination of major and trace elements in milk by inductively coupled plasma atomic emission and mass spectrometry. J Anal At Spectrom 12:1243–1246CrossRefGoogle Scholar
  29. 29.
    McKinstry PJ, Indyk HE, Kim ND (1999) The determination of major and minor elements in milk and infant formula by slurry nebulisation and inductively coupled plasma-optical emission spectrometry (ICP-OES). Food Chem 65:245–252CrossRefGoogle Scholar
  30. 30.
    Ferreira EC, Menezes EA, Matos WO, Milori DMBP, Nogueria ARA et al (2010) Determination of Ca in breakfast cereals by laser induced breakdown spectroscopy. Food Control 21:1327–1330CrossRefGoogle Scholar
  31. 31.
    Trevizan LC Jr, DS SRE, Jr NDV, Nunes LC et al (2009) Evaluation of LIBS for the determination of micronutrients in plant materials. Spectrochim Acta B 64:369–377CrossRefGoogle Scholar
  32. 32.
    Pouzar M, Cernohorsky T, Prusova M, Prokopcakova P, Krejcova A (2009) LIBS analysis of crop plants. J Anal At Spectrom 24:953–957CrossRefGoogle Scholar
  33. 33.
    Stankova A, Dutruch L, Gilon N, Kanicky V (2011) Comparison of LA-ICP-MS and LA-ICP-OES for the analysis of some elements in fly ashes. J Anal At Spectrom (in press)Google Scholar
  34. 34.
    Stankova A, Dutruch L, Gilon N, Kanicky V (2010) A simple LIBS method for fast quantitative analysis of fly ashes. Fuel 89:3468–3474CrossRefGoogle Scholar
  35. 35.
    El Sherbini AM, El Sherbini ThM, Hegazy H, Cristoforetti H, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E (2005) Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements. Spectrochim Acta B 60:1573–1579CrossRefGoogle Scholar
  36. 36.
    El Sherbini AM, Hegazy H, El Sherbini ThM (2006) Measurement of the electron density utilizing the Hα-line from laser produced plasma in air. Spectrochim Acta B 61:532–539CrossRefGoogle Scholar
  37. 37.
    Griem HR (1974) Spectral line broadening by plasmas. Academic Press, New YorkGoogle Scholar
  38. 38.
    De Lucia FC Jr, Harmon RS, McNesby KL, Winkel RJ Jr, Miziolek AW (2003) Laser-induced breakdown spectroscopy analysis of energetic materials. Appl Optics 42:6148–6152CrossRefGoogle Scholar
  39. 39.
    Sun L, Yu H (2009) Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method. Talanta 79:388–395CrossRefGoogle Scholar
  40. 40.
    Pandhija S, Rai AK (2009) In situ multielemental monitoring in coral skeleton by CF-LIBS. Appl Phys B 94:545–552CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • W. Q. Lei
    • 1
    • 3
  • J. El Haddad
    • 1
    • 2
  • V. Motto-Ros
    • 1
  • N. Gilon-Delepine
    • 2
  • A. Stankova
    • 2
  • Q. L. Ma
    • 1
  • X. S. Bai
    • 3
  • L. J. Zheng
    • 3
  • H. P. Zeng
    • 3
  • J. Yu
    • 1
  1. 1.Université de Lyon, Université Lyon 1, Villeurbanne, CNRS, UMR5579, LASIMLyonFrance
  2. 2.Université de Lyon, Université Lyon 1, Villeurbanne, CNRS, UMR5180, LSALyonFrance
  3. 3.State Key Laboratory of Precision SpectroscopyEast China Normal UniversityShanghaiChina

Personalised recommendations