Advertisement

Analytical and Bioanalytical Chemistry

, Volume 400, Issue 9, pp 2755–2761 | Cite as

Detection of thiopurine methyltransferase activity in lysed red blood cells by means of lab-on-a-chip surface enhanced Raman spectroscopy (LOC-SERS)

  • Anne März
  • Bettina Mönch
  • Petra Rösch
  • Michael Kiehntopf
  • Thomas Henkel
  • Jürgen Popp
Original Paper

Abstract

In this contribution, the great potential of surface enhanced Raman spectroscopy (SERS) in a lab-on-a-chip (LOC) device for the detection of analyte molecules in a complex environment is demonstrated. Using LOC-SERS, the enzyme activity of thiopurine S-methyltransferase (TPMT) is analysed and identified in lysed red blood cells. The conversion of 6-mercaptopurine to 6-methylmercaptopurine catalysed by TPMT is observed as it gives evidence for the enzyme activity. Being able to determine the TPMT activity before starting a treatment using 6-mercaptopurine, an optimized dosage can be applied to each patient and serious toxicity appearing within thiopurine treatment will be prevented.

Keywords

SERS Microfluidic lab-on-a-chip Enzyme activity Thiopurine methyltransferase 6-Mercaptopurine 

Notes

Acknowledgement

We gratefully acknowledge the Free State of Thuringia and the European Union (EFRE) for financial support under support code 2008FE9112 and 2008FE9113 (BioOptiSens).

References

  1. 1.
    Bergan S, Rugstad IE, Bentdal O, Sodal G, Hartmann A, Leivestad T, Stokke O (1998) Monitored high-dose azathioprine treatment reduces acute rejection episodes after renal transplantation. Transplantation 66(3):334–339CrossRefGoogle Scholar
  2. 2.
    Nielsen OH, Vainer B, Rask-Madsen J (2001) Review article: the treatment of inflammatory bowel disease with 6-mercaptopurine or azathioprine. Aliment Pharmacol Ther 15(11):1699–1708CrossRefGoogle Scholar
  3. 3.
    Pritchard MT, Butow PN, Stevens MM, Duley JA (2006) Understanding medication adherence in pediatric acute lymphoblastic leukemia: a review. J Pediatr Hematol Oncol 28(12):816–823CrossRefGoogle Scholar
  4. 4.
    Duley JA, Florin THJ (2005) Thiopurine therapies—problems, complexities, and progress with monitoring thioguanine nucleotides. Ther Drug Monit 27(5):647–654CrossRefGoogle Scholar
  5. 5.
    Gearry RB, Barclay ML (2005) Azathioprine and 6-mercaptopurine pharmacogenetics and metabolite monitoring in inflammatory bowel disease. J Gastroenterol Hepatol 20(8):1149–1157CrossRefGoogle Scholar
  6. 6.
    Zhang JP, Guan YY, Wu JH, Xu AL, Zhou SF, Huang M (2004) Phenotyping and genotyping study of thiopurine S-methyltransferase in healthy Chinese children: a comparison of Han and Yao ethnic groups. Br J Clin Pharmacol 58(2):163–168CrossRefGoogle Scholar
  7. 7.
    Jacqzaigrain E, Bessa E, Medard Y, Mircheva Y, Vilmer E (1994) Thiopurine methyltransferase activity in a French population—HPLC assay conditions and effects of drugs and inhibitors. Br J Clin Pharmacol 38(1):1–8Google Scholar
  8. 8.
    Nishida A, Kubota T, Yamada Y, Higashi K, Kitamura K, Nakahara K, Iga T (2002) Thiopurine S-methyltransferase activity in Japanese subjects: metabolic activity of 6-mercaptopurine 6-methylation in different TPMT genotypes. Clin Chim Acta 323(1–2):147–150CrossRefGoogle Scholar
  9. 9.
    Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182CrossRefGoogle Scholar
  10. 10.
    Monaghan PB, McCarney KM, Ricketts A, Littleford RE, Docherty F, Smith WE, Graham D, Cooper JM (2007) Bead-based DNA diagnostic assay for chlamydia using nanoparticle-mediated surface-enhanced resonance Raman scattering detection within a lab-on-a-chip format. Anal Chem 79(7):2844–2849CrossRefGoogle Scholar
  11. 11.
    Qiu JM, Zhou Y, Chen H, Lin JM (2009) Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics. Talanta 79(3):787–795CrossRefGoogle Scholar
  12. 12.
    Bai HY, Lin SL, Chan SA, Fuh MR (2010) Characterization and evaluation of two-dimensional microfluidic chip-HPLC coupled to tandem mass spectrometry for quantitative analysis of 7-aminoflunitrazepam in human urine. Analyst 135(10):2737–2742CrossRefGoogle Scholar
  13. 13.
    Ehlert S, Tallarek U (2007) High-pressure liquid chromatography in lab-on-a-chip devices. Analytical And Bioanalytical Chemistry 388(3):517–520CrossRefGoogle Scholar
  14. 14.
    Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314(5804):1464–1467CrossRefGoogle Scholar
  15. 15.
    Ackermann KR, Henkel T, Popp J (2007) Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. ChemPhysChem 8:2665–2670CrossRefGoogle Scholar
  16. 16.
    Strehle KR, Cialla D, Rösch P, Henkel T, Koehler M, Popp J (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79(4):1542–1547CrossRefGoogle Scholar
  17. 17.
    März A, Ackermann KR, Malsch D, Bocklitz T, Henkel T, Popp J (2009) Towards a quantitative SERS approach—online monitoring of analytes in a microfluidic system with isotope edited internal standards. J Biophotonics 2(4):232–242CrossRefGoogle Scholar
  18. 18.
    Hollywood KA, Shadi IT, Goodacre R (2010) Monitoring the succinate dehydrogenase activity isolated from mitochondria by surface enhanced Raman acattering. J Phys Chem C 114(16):7308–7313CrossRefGoogle Scholar
  19. 19.
    Moore BD, Stevenson L, Watt A, Flitsch S, Turner NJ, Cassidy C, Graham D (2004) Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nat Biotechnol 22(9):1133–1138CrossRefGoogle Scholar
  20. 20.
    Yue ZC, Zhuang FF, Kumar R, Wang L, Cronin SB, Liu YH (2009) Cell kinase activity assay based on surface enhanced Raman spectroscopy. Spectrochim Acta, A Mol Biomol Spectrosc 73(2):226–230CrossRefGoogle Scholar
  21. 21.
    Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395CrossRefGoogle Scholar
  22. 22.
    Henkel T, Bermig T, Kielpinski M, Grodrian A, Metze J, Kohler JM (2004) Chip modules for generation and manipulation of fluid segments for micro serial flow processes. Chem Eng J 101(1–3):439–445CrossRefGoogle Scholar
  23. 23.
    R RDCTI (2008) A language and environment for statistical computing. Vienna, AustriaGoogle Scholar
  24. 24.
    Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR (1988) Nucl Instrum Methods Phys Res Sect B B34:396–402CrossRefGoogle Scholar
  25. 25.
    Cortes C, Vapnik V (1995) Mach Learn 20:273–297Google Scholar
  26. 26.
    Ivanciuc O (2007) Applications of support vector machines in chemistry. In: Lipkowitz KB, Cundari TR, and Boyd DB (eds) Reviews in computational chemistry, vol. 23, pp. 291–400. Wiley-VCH, WeinheimGoogle Scholar
  27. 27.
    Szeghalmi AV, Leopold L, Pinzaru S, Chis V, Silaghi-Dumitrescu I, Schmitt M, Popp J, Kiefer W (2005) Adsorption of 6-mercaptopurine and 6-mercaptopurine riboside on silver colloid: a pH dependent surface enhanced Raman spectroscopy and density functional theory study. Part I. 6-Mercaptopurine. J Mol Struct 735:103–113CrossRefGoogle Scholar
  28. 28.
    Vivoni A, Chen SP, Ejeh D, Hosten CM (2000) Determination of the orientation of 6-mercaptopurine adsorbed on a silver electrode by surface-enhanced Raman spectroscopy and normal mode calculations. Langmuir 16(7):3310–3316CrossRefGoogle Scholar
  29. 29.
    Becker M, Budich C, Deckert V, Janasek D (2009) Isotachophoretic free-flow electrophoretic focusing and SERS detection of myoglobin inside a miniaturized device. Analyst 134:38–40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Anne März
    • 1
  • Bettina Mönch
    • 2
  • Petra Rösch
    • 1
  • Michael Kiehntopf
    • 2
  • Thomas Henkel
    • 3
  • Jürgen Popp
    • 1
    • 3
  1. 1.Institute of Physical ChemistyFriedrich Schiller UniversityJenaGermany
  2. 2.Department of Clinical Chemistry and Laboratory DiagnosticsUniversity Hospital JenaJenaGermany
  3. 3.Institute of Photonic Technology (IPHT)JenaGermany

Personalised recommendations