Advertisement

Analytical and Bioanalytical Chemistry

, Volume 400, Issue 2, pp 561–569 | Cite as

Electronic coupling and scaling effects during dielectric barrier electrospray ionization

  • A. K. Stark
  • C. Meyer
  • T. Kraehling
  • G. Jestel
  • U. Marggraf
  • M. Schilling
  • D. Janasek
  • J. FranzkeEmail author
Original Paper

Abstract

The mechanism of the previously published technique of dielectric barrier electrospray ionization (DB-ESI) was investigated in more detail. Two independent current signals occurring during the DB-ESI could be explained and allocated to sub-processes. The modulated shape of the HV signal, the applied frequency as well as the inner diameter of the emitter capillary have a big impact on the spray. Furthermore, there exists a cut-off frequency which depends on the electronic properties of the DB-ESI interface. Comparable mass spectra for lysine employing both conventional ESI and DB-ESI show a good analytical potential of the new technique.

Keywords

Dielectric barrier electrospray ionization DB-ESI Displacement current 

Notes

Acknowledgements

The financial support by the Ministerium für Innovationen, Wissenschaft, Forschung und Technologie des Landes Nordrhein-Westfalen and by the Bundesministerium für Bildung und Forschung as well as by the Deutsche Forschungsgemeinschaft (JA1799/1-1) is gratefully acknowledged.

References

  1. 1.
    Valaskovic GA, McLafferty FW (1996) J Am Soc Mass Spectrom 7:1270–1272CrossRefGoogle Scholar
  2. 2.
    Chang YZ, Chen YR, Her GR (2001) Anal Chem 73:5083–5087CrossRefGoogle Scholar
  3. 3.
    Dahlin AP, Wetterhall M, Liljegren G, Bergström SK, Andrén P, Nyholm L, Markides KE, Bergquist J (2005) Analyst 130:193–199CrossRefGoogle Scholar
  4. 4.
    Maziarz EP, Lorenz SA, White TP, Wood TD (2000) J Am Soc Mass Spectrom 11:659–663CrossRefGoogle Scholar
  5. 5.
    Svedberg M, Pettersson A, Nilsson S, Bergquist J, Nyholm L, Nikolajeff FF, Markides K (2003) Anal Chem 75:3934–3940CrossRefGoogle Scholar
  6. 6.
    Wetterhall M, Klett O, Markides KE, Nyholm L, Bergquist J (2003) Analyst 128:728–733CrossRefGoogle Scholar
  7. 7.
    Van Berkel GJ (1998) J Anal At Spectrom 13:603–607CrossRefGoogle Scholar
  8. 8.
    de la Mora JF, Van Berkel GJ, Enke CG, Cole RB, Martinez-Sanchez M, Fenn JB (2000) J Mass Spectrom 35:939–952CrossRefGoogle Scholar
  9. 9.
    Van Berkel GJ, Zhou F (1995) Anal Chem 17:2916–2923CrossRefGoogle Scholar
  10. 10.
    Van Berkel GJ, Asano KG, Schnier PD (2001) J Am Soc Mass Spectrom 12:853–862CrossRefGoogle Scholar
  11. 11.
    Schilling M, Janasek D, Franzke J (2008) Anal Bioanal Chem 391:555–561CrossRefGoogle Scholar
  12. 12.
    Stark AK, Schilling M, Janasek D, Franzke J (2010) Anal Bioanal Chem 397:1767–1772CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. K. Stark
    • 1
  • C. Meyer
    • 1
  • T. Kraehling
    • 1
  • G. Jestel
    • 1
  • U. Marggraf
    • 1
  • M. Schilling
    • 1
  • D. Janasek
    • 1
  • J. Franzke
    • 1
    Email author
  1. 1.Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V.DortmundGermany

Personalised recommendations