Advertisement

Analytical and Bioanalytical Chemistry

, Volume 400, Issue 2, pp 535–545 | Cite as

PEGylated polyethyleneimine grafted silica nanoparticles: enhanced cellular uptake and efficient siRNA delivery

  • Haisung Lee
  • Dongkyung Sung
  • Murugan Veerapandian
  • Kyusik YunEmail author
  • Soo-Won SeoEmail author
Original Paper

Abstract

The present paper reports the utilization of hybrid nanocomposite particles consisting of PEI25k-PEG5k copolymer grafted silica nanoparticles (SiO2NPs) for enhanced cellular uptake and siRNA delivery. High-resolution transmission electron microscopy and dynamic light scattering measurements ensured the average particle size of the final hybrid component as 45 nm (core SiO2, 28–30 nm and shell PEI25k-PEG5k, 12–15 nm). Surface morphology from atomic force microscopy analysis showed the significant relationship between the particle size and shape. 29Si and 13C cross-polarization–magic angle spinning solid state nuclear magnetic resonance (NMR), 1H-NMR, and Fourier transform infrared spectroscopy were used to obtain the relevant structural information (such as Q3, silanol; Q4, siloxane functional groups of SiO2NPs; resonance shifts and bending vibrations of PEI25k, –CH2–CH2–NH–; and PEG5k, –CH2–CH2–O–) from copolymer nanoparticle. Stable complexation of siRNA and nanocomposite particle (wt.%:wt.%) was achieved from 1:5 to 1:15 ratio. Nanocomposite particle (N/P) ratio and siRNA concentration determine the stability and knockdown efficiency of the PEI25k-PEG5k-graft-SiO2NPs–siRNA complexes. It was shown that highly positively charged (zeta potential, +66 mV) PEI25k-PEG5k-graft-SiO2NPs result in strong affinity with negatively charged siRNA. Confocal microscopy showed intensified cellular uptake of siRNA into cytoplasm of A549 cancer cell utilized for in vitro study. In conclusion, the coherence, graft density of copolymer-SiO2NPs, and siRNA concentration were found to strongly influence the stability, and hence determine the knockdown efficiency, of PEI25k-PEG5k-graft-SiO2NPs–siRNA complexes.

Figure

PEI25k-PEG5k-graft-SiO2NPs: enhanced cellular uptake and efficient siRNA delivery

Keywords

siRNA PEI25k-PEG5k-graft-SiO2NPs Cellular transfection Low cytotoxicity 

Notes

Acknowledgements

This study was supported by a grant of the Ministry of Health and Welfare (A040041) and Samsung Biomedical Research Institute, Republic of Korea (PB00021). We thank Ms. Yunhee Kim for solid NMR spectroscopic analysis in NICEM, SNU, and Ms. Youngshin Yoo for HR-TEM analysis in SKKU.

Supplementary material

216_2011_4770_MOESM1_ESM.pdf (313 kb)
ESM 1 (PDF 313 kb)

References

  1. 1.
    Ulbrich W, Lamprecht A (2010) J R Soc Interface 7:55–66CrossRefGoogle Scholar
  2. 2.
    Green JJ, Zhou BY, Mitalipova MM, Beard C, Langer R, Jaenisch R (2008) Nano Lett 8:3126–3130CrossRefGoogle Scholar
  3. 3.
    Allouche J, Boissiere M, Helary C, Livage J, Coradin T (2006) J Mater Chem 16:3120–3125CrossRefGoogle Scholar
  4. 4.
    Yu YY, Chen CY, Chen WC (2003) Polymer 44:593–601CrossRefGoogle Scholar
  5. 5.
    Borrego T, Andrade M, Pinto ML, Silva AR, Carvalho AP, Rocha J, Cristina F, Joao P (2010) J Colloid Interf Sci 344:603–610CrossRefGoogle Scholar
  6. 6.
    Kleemann E, Neu M, Jekel N, Fink L, Schmehl T, Gessler T, Seeger W, Kissel T (2005) J Control Release 109:299–316CrossRefGoogle Scholar
  7. 7.
    Burke RS, Pun SH (2008) Bioconjugate Chem 19:693–704CrossRefGoogle Scholar
  8. 8.
    Ashtari P, He X, Wang K, Gong P (2005) Talanta 67:548–554CrossRefGoogle Scholar
  9. 9.
    Jere D, Jiang HL, Arote R, Kim YK, Choi YJ, Cho MH, Akaike T, Cho CS (2009) Expert Opin Drug Deliv 6:827–834CrossRefGoogle Scholar
  10. 10.
    Fuller JE, Zugates GT, Ferreira LS, Ow HS, Nguyen NN, Wiesner UB, Robert SL (2008) Biomaterials 29:1526–1532CrossRefGoogle Scholar
  11. 11.
    Choi SJ, Oh JM, Choy JH (2009) J Inorg Biochem 103:463–471CrossRefGoogle Scholar
  12. 12.
    Wang H, Yang R, Yang L, Tan W (2009) ACS Nano 3:2451–2460CrossRefGoogle Scholar
  13. 13.
    Elbakry A, Zaky A, Liebl R, Rachel R, Goepferich A, Breunig M (2009) Nano Lett 9:2059–2064CrossRefGoogle Scholar
  14. 14.
    Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME (2007) Proc Natl Acad Sci USA 104:15549–15554CrossRefGoogle Scholar
  15. 15.
    Merkel OM, Livrizzi D, Pfestroff A, Schurrat T, Behe M, Kissel T (2009) Bioconjugate Chem 20:174–182CrossRefGoogle Scholar
  16. 16.
    Christensen LV, Chang CW, Yockman JW, Conners R, Jackson H, Zhong Z, Jan F, David AB, Sung WK (2007) J Control Release 118:254–261CrossRefGoogle Scholar
  17. 17.
    Meade BR, Dowdy SF (2008) Adv Drug Deliv Rev 60:530–536CrossRefGoogle Scholar
  18. 18.
    Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH, Lee JK (2005) Angew Chem Int Ed 44:1068–1071CrossRefGoogle Scholar
  19. 19.
    Bartlett DW, Davis ME (2008) Biotechnol Bioeng 99:975–985CrossRefGoogle Scholar
  20. 20.
    Akhtar S, Benter IF (2007) J Clin Invest 117:3623–3632CrossRefGoogle Scholar
  21. 21.
    Davis ME (2009) Mol Pharmaceut 6:659–668CrossRefGoogle Scholar
  22. 22.
    Lipski AM, Pino CJ, Haselton FR, Chen IW, Shastri VP (2008) Biomaterials 29:3836–3846CrossRefGoogle Scholar
  23. 23.
    Xu Y, Li Q (2007) Clin Chem 53:1503–1510CrossRefGoogle Scholar
  24. 24.
    Feng L, Wang Y, Wang N, Ma Y (2009) Polym Bull 63:313–327CrossRefGoogle Scholar
  25. 25.
    Joubert M, Delaite C, Bourgeat-Lami B, Dumas P (2005) Macromol Rapid Commun 26:602–607CrossRefGoogle Scholar
  26. 26.
    Estévez MC, O’donoghue MB, Chen X, Tan W (2009) Nano Res 2:448–461CrossRefGoogle Scholar
  27. 27.
    Graf C, Vossen DLJ, Imhof A, Blaaderen AV (2003) Langmuir 19:6693–6700CrossRefGoogle Scholar
  28. 28.
    An Y, Chen M, Xue Q, Liu W (2007) J Colloid Interf Sci 311:507–513CrossRefGoogle Scholar
  29. 29.
    Park KM, Kang HC, Cho JK, Chung IJ, Cho SH, Bae YH, Kun N (2009) Biomaterials 30:2642–2652CrossRefGoogle Scholar
  30. 30.
    Salon MC, Gerbaud G, Abdelmouleh M, Bruzzese C, Boufi S, Belgacem MN (2007) Magn Reson Chem 45:473–483CrossRefGoogle Scholar
  31. 31.
    Brannon-Peppas L, Blanchette JO (2004) Adv Drug Deliv Rev 56:1649–1659CrossRefGoogle Scholar
  32. 32.
    Kobayashi S, Nakase I, Kawabata N, Yu HH, Pujals S, Imanishi M, Ernest G, Shiroh F (2009) Bioconjugate Chem 20:953–959CrossRefGoogle Scholar
  33. 33.
    Lessard-Viger M, Rioux M, Rainville L, Boudreau D (2009) Nano Lett 9(8):3066–3071CrossRefGoogle Scholar
  34. 34.
    Mijatovic WH, Binder HG (2000) Mikrochim Acta 133:175–181CrossRefGoogle Scholar
  35. 35.
    Takayama K, Tadokoro A, Pujals S, Nakase I, Giralt E, Futaki S (2009) Bioconjugate Chem 20:249–257CrossRefGoogle Scholar
  36. 36.
    Mao S, Neu M, Germershaus O, Merkel O, Sitterberg J, Bakowsky U, Thomas K (2006) Bioconjugate Chem 17:1209–1218CrossRefGoogle Scholar
  37. 37.
    Petersen H, Petra MF, Dagmar F, Thomas K (2002) Macromolecules 35:6867–6874CrossRefGoogle Scholar
  38. 38.
    Nguyen HK, Lemieux P, Vinogradov SV, Gebhart CL, Guérin L, Paradis G, Bronich TK, Alakhov VY, Kabanov AV (2000) Gene Ther 7:126–138CrossRefGoogle Scholar
  39. 39.
    Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM (2005) Proc Natl Acad Sci U S A 102:5679–5684CrossRefGoogle Scholar
  40. 40.
    Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A (2005) Gene Ther 12:461–466CrossRefGoogle Scholar
  41. 41.
    Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) ACS Nano 2:889–896CrossRefGoogle Scholar
  42. 42.
    Brus C, Petersen H, Aigner A, Czubayko F, Kissel T (2004) Bioconjugate Chem 15:677–684CrossRefGoogle Scholar
  43. 43.
    Merdan T, Callahan J, Petersen H, Kunath K, Bakowsky U, Kopecková P, Thomas K, Jindřich K (2003) Bioconjugate Chem 14:989–996CrossRefGoogle Scholar
  44. 44.
    Brus C, Petersen H, Aigner A, Czubayko F, Kissel T (2004) Eur J Pharm Biopharm 57:427–430CrossRefGoogle Scholar
  45. 45.
    Glodde M, Sirsi SR, Lutz GJ (2006) Biomacromolecules 7:347–356CrossRefGoogle Scholar
  46. 46.
    Forrest ML, Meister GE, Koerber JT, Pack DW (2004) Pharm Res 21:365–371CrossRefGoogle Scholar
  47. 47.
    Thomas M, Klibanov AM (2002) Proc Natl Acad Sci U S A 99:14640–14645CrossRefGoogle Scholar
  48. 48.
    Doody AM, Korley JN, Dang KP, Zawaneh PN, Putnam D (2006) J Control Release 116:227–237CrossRefGoogle Scholar
  49. 49.
    Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S, Roberts CJ, Dagmar F, Martyn CD, Thomas K (2002) Bioconjugate Chem 13:845–854CrossRefGoogle Scholar
  50. 50.
    Kunath K, von Harpe A, Petersen H, Fischer D, Voigt K, Kissel T, Ulrich B (2002) Pharm Res 19:810–817CrossRefGoogle Scholar
  51. 51.
    Neu M, Fischer D, Kissel T (2005) J Gene Med 7:992–1009CrossRefGoogle Scholar
  52. 52.
    Duan H, Nie S (2007) J Am Chem Soc 129:3333–3338CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Interdisciplinary Program of Biomedical Engineering, School of MedicineSungkyunkwan UniversitySeoulRepublic of Korea
  2. 2.Department of Life ScienceThe Graduate School of Korea UniversitySeoulRepublic of Korea
  3. 3.College of BionanotechnologyGachon BioNano Research Institute, Kyungwon UniversitySeongnam CityRepublic of Korea

Personalised recommendations