Advertisement

Analytical and Bioanalytical Chemistry

, Volume 400, Issue 2, pp 435–447 | Cite as

Comparison of stationary phases for packed column supercritical fluid chromatography based upon ionic liquid motifs: a study of cation and anion effects

  • Jonathan Smuts
  • Eranda Wanigasekara
  • Daniel W. ArmstrongEmail author
Original Paper

Abstract

A class of stationary phases for packed column supercritical fluid chromatography (SFC), referred to as immobilized ionic liquids (IILs), is evaluated with a two-part study: (1) a cation effect study and (2) an anion effect study. The former study compares six different IILs (tripropylphosphonium, tributylphosphonium, methyl-imidazolium, benzyl-imidazolium, triphenylphosphonium, and 4,4′-bipyridyl) on silica gel, evaluating their performance in SFC with all the counter anions as trifluoroacetate (TFA). In the latter study, the stationary phase consisted of a bonded tributylphosphonium cation and varying counter anions (acetate, TFA, chloride, NTf 2 , and perchlorate). An order of retentivity was established for the cation effect study, and the favorable behavior of phosphonium-based stationary phases is reported for the first time in SFC. It was not possible to always assign a retentivity order for the anion effect study, but wide variations in selectivity are noted for different anions showing the tunable nature of this class of stationary phases.

Keywords

SFC (supercritical fluid chromatography) Separations/instrumentation Ionic liquids 

Notes

Acknowledgement

The authors gratefully acknowledge the Supelco “Ionic Liquid Phases for S.F.C. Grant” for its monetary support.

Supplementary material

216_2011_4767_MOESM1_ESM.pdf (462 kb)
ESM 1 (PDF 462 kb)

References

  1. 1.
    Klesper E, Corwin AH, Turner DA (1962) High pressure gas chromatography above critical temperatures. J Org Chem 27:700–701CrossRefGoogle Scholar
  2. 2.
    Fjeldsted JC, Lee ML (1984) Capillary supercritical fluid chromatography. Anal Chem 56:619A–628ACrossRefGoogle Scholar
  3. 3.
    Smith RD, Felix WD, Fjeldsted JC, Lee ML (1982) Capillary column supercritical fluid chromatography mass spectrometry. Anal Chem 54:1883–1885CrossRefGoogle Scholar
  4. 4.
    Peaden PA, Fjeldsted JC, Lee ML, Springston SR, Novotny M (1982) Instrumental aspects of capillary supercritical fluid chromatography. Anal Chem 54:1090–1093CrossRefGoogle Scholar
  5. 5.
    Novotny M, Springston SR, Peaden PA, Fjeldsted JC, Lee ML (1981) Capillary supercritical fluid chromatography. Anal Chem 53:407A–414ACrossRefGoogle Scholar
  6. 6.
    Smith RM (1999) Supercritical fluids in separation science—the dreams, the reality and the future. J Chromatogr A 856:83–115CrossRefGoogle Scholar
  7. 7.
    Taylor LT (2010) Supercritical fluid chromatography. Anal Chem 82:4925–4935CrossRefGoogle Scholar
  8. 8.
    Taylor LT (2009) Supercritical fluid chromatography for the 21st century. J Supercrit Fluids 47:566–573CrossRefGoogle Scholar
  9. 9.
    Berger TA (1997) Separation of polar solutes by packed column supercritical fluid chromatography. J Chromatogr A 785:3–33CrossRefGoogle Scholar
  10. 10.
    Berger T, Berger B (2010) A review of column developments for supercritical fluid chromatography. LCGC North Am 28:344–357Google Scholar
  11. 11.
    Zheng J, Taylor LT, Pinkston JD (2006) Elution of cationic species with/without ion pair reagents from polar stationary phases via SFC. Chromatographia 63:267–276CrossRefGoogle Scholar
  12. 12.
    Cazenave-Gassiot A, Boughtflower R, Caldwell J, Hitzel L, Holyoak C, Lane S, Oakley P, Pullen F, Richardson S, Langley GJ (2009) Effect of increasing concentration of ammonium acetate as an additive in supercritical fluid chromatography using CO2–methanol mobile phase. J Chromatogr A 1216:6441–6450CrossRefGoogle Scholar
  13. 13.
    Ashraf-Khorassani M, Taylor LT (2010) Subcritical fluid chromatography of water soluble nucleobases on various polar stationary phases facilitated with alcohol-modified CO2 and water as the polar additive. J Sep Sci 33:1682CrossRefGoogle Scholar
  14. 14.
    Yip HSH, Ashraf-Khorassani M, Taylor LT (2007) Feasibility of phospholipids separation by packed column SFC with mass spectrometric and light scattering detection. Chromatographia 65:655–665CrossRefGoogle Scholar
  15. 15.
    Berger TA, Fogleman K, Staats T, Bente P, Crocket I, Farrell W, Osonubi M (2000) The development of a semi-preparatory scale supercritical-fluid chromatograph for high-throughput purification of ‘combi-chem’ libraries. J Biochem Biophys Methods 43:87–111CrossRefGoogle Scholar
  16. 16.
    Berger TA, Wilson WH (2000) High-speed screening of combinatorial libraries by gradient packed-column supercritical fluid chromatography. J Biochem Biophys Methods 43:77–85CrossRefGoogle Scholar
  17. 17.
    Bailey CJ, Ruane RJ, Wilson ID (1994) Packed-column supercritical fluid chromatography of β-blockers. J Chromatogr Sci 32:426–429Google Scholar
  18. 18.
    Bui H, Masquelin T, Perun T, Castle T, Dage J, Kuo M (2008) Investigation of retention behavior of drug molecules in supercritical fluid chromatography using linear solvation energy relationships. J Chromatogr A 1206:186–195CrossRefGoogle Scholar
  19. 19.
    Steuer W, Baumann J, Erni F (1990) Separation of ionic drug substances by supercritical fluid chromatography. J Chromatogr A 500:469–479CrossRefGoogle Scholar
  20. 20.
    Perkins JR, Games DE, Startin JR, Gilbert J (1991) Analysis of sulphonamides using supercritical fluid chromatography and supercritical fluid chromatography–mass spectrometry. J Chromatogr A 540:239–256CrossRefGoogle Scholar
  21. 21.
    West C, Lesellier E (2007) Characterisation of stationary phases in supercritical fluid chromatography with the solvation parameter model: V. Elaboration of a reduced set of test solutes for rapid evaluation. J Chromatogr A 1169:205–219CrossRefGoogle Scholar
  22. 22.
    Bhoir IC, Patil ST, Sundaresan M (1999) Application of packed column supercritical fluid chromatography to the simultaneous determination of seven anticonvulsant drugs. Talanta 48:1179–1189CrossRefGoogle Scholar
  23. 23.
    Lesellier E, Tchapla A (2005) A simple subcritical chromatographic test for an extended ODS high performance liquid chromatography column classification. J Chromatogr A 1100:45–59CrossRefGoogle Scholar
  24. 24.
    Matsubara A, Bamba T, Ishida H et al (2009) Highly sensitive and accurate profiling of carotenoids by supercritical fluid chromatography coupled with mass spectrometry. J Sep Sci 32:1459CrossRefGoogle Scholar
  25. 25.
    Schoenmakers PJ, Verhoeven FCCJG, Van Den Bogaert HM (1986) Application of supercritical fluid chromatography to the analysis of liquid-crystal mixtures. J Chromatogr A 371:121–134CrossRefGoogle Scholar
  26. 26.
    Bamba T, Fukusaki E, Kajiyama S, Ute K, Kitayama T, Kobayashi A (2001) High-resolution analysis of polyprenols by supercritical fluid chromatography. J Chromatogr A 911:113–117CrossRefGoogle Scholar
  27. 27.
    Harris CM (2002) Product review: the SFC comeback. Anal Chem 74:87A–91AGoogle Scholar
  28. 28.
    Mukhopadhyay R (2008) SFC: embraced by industry but spurned by academia. Anal Chem 80:3091–3094CrossRefGoogle Scholar
  29. 29.
    Bonhote P, Dias A, Papageorgiou N, Kalyanasundaram K, Graetzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178CrossRefGoogle Scholar
  30. 30.
    Sun J, Forsyth M, MacFarlane DR (1998) Room-temperature molten salts based on the quaternary ammonium ion. J Phys Chem B 102:8858–8864CrossRefGoogle Scholar
  31. 31.
    Parshall GW (1972) Catalysis in molten salt media. J Amer Chem Soc 94:8716–8719CrossRefGoogle Scholar
  32. 32.
    Williams SD, Schoebrechts JP, Selkirk JC, Mamantov G (1987) A new room temperature molten salt solvent system: organic cation tetrachloroborates. J Am Chem Soc 109:2218–2219CrossRefGoogle Scholar
  33. 33.
    Huddleston JG, Rogers RD (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem Commun (Cambridge) 16:1765–1766CrossRefGoogle Scholar
  34. 34.
    Karodia N, Guise S, Newlands C, Andersen J (1998) Clean catalysis with ionic solvents-phosphonium tosylates for hydro-formylation. Chem Commun (Cambridge) 21:2341–2342CrossRefGoogle Scholar
  35. 35.
    Berthod A, Ruiz-Angel MJ, Carda-Broch S (2008) Ionic liquids in separation techniques. J Chromatogr A 1184:6–18CrossRefGoogle Scholar
  36. 36.
    Anderson JL, Armstrong DW (2005) Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases. Anal Chem 77:6453–6462CrossRefGoogle Scholar
  37. 37.
    Wanigasekara E, Perera S, Crank JA, Sidisky L, Shirey R, Berthod A, Armstrong DW (2010) Bonded ionic liquid polymeric material for solid-phase microextraction GC analysis. Anal Bioanal Chem 396:511–524CrossRefGoogle Scholar
  38. 38.
    Liu S, Zhou F, Zhao L, Xiao X, Liu X, Jiang S (2004) Immobilized 1,3-dialkylimidazolium salts as new interface in HPLC separation. Chem Lett 33:496–497CrossRefGoogle Scholar
  39. 39.
    Sun Y, Stalcup AM (2006) Mobile phase effects on retention on a new butylimidazolium-based high-performance liquid chromatographic stationary phase. J Chromatogr A 1126:276–282CrossRefGoogle Scholar
  40. 40.
    Qiu H, Jiang S, Liu X (2006) N-Methylimidazolium anion-exchange stationary phase for high-performance liquid chromatography. J Chromatogr A 1103:265–270CrossRefGoogle Scholar
  41. 41.
    Qiu H, Jiang S, Liu X, Zhao L (2006) Novel imidazolium stationary phase for high-performance liquid chromatography. J Chromatogr A 1116:46–50CrossRefGoogle Scholar
  42. 42.
    Sun Y, Cabovska B, Evans CE, Ridgway TH, Stalcup AM (2005) Retention characteristics of a new butylimidazolium-based stationary phase. Anal Bioanal Chem 382:728–734CrossRefGoogle Scholar
  43. 43.
    Wang Q, Baker GA, Baker SN, Colon LA (2006) Surface confined ionic liquid as a stationary phase for HPLC. Analyst 131:1000–1005CrossRefGoogle Scholar
  44. 44.
    Chou F, Wang W, Wei G (2009) Using subcritical/supercritical fluid chromatography to separate acidic, basic, and neutral compounds over an ionic liquid-functionalized stationary phase. J Chromatogr A 1216:3594–3599CrossRefGoogle Scholar
  45. 45.
    He L, Zhang W, Zhao L, Liu X, Jiang S (2003) Effect of 1-alkyl-3-methylimidazolium-based ionic liquids as the eluent on the separation of ephedrines by liquid chromatography. J Chromatogr A 1007:39–45CrossRefGoogle Scholar
  46. 46.
    Ruiz-Angel MJ, Carda-Broch S, Berthod A (2006) Ionic liquids versus triethylamine as mobile phase additives in the analysis of β-blockers. J Chromatogr A 1119:202–208CrossRefGoogle Scholar
  47. 47.
    Marszall MP, Kaliszan R (2007) Application of ionic liquids in liquid chromatography. Crit Rev Anal Chem 37:127–140CrossRefGoogle Scholar
  48. 48.
    Masuda F, Watanabe Y, Ikegami T, Tanaka N (2009) Development of ion-exchange monolithic column immobilized with ionic functionalities. Chromatography 30:89–90Google Scholar
  49. 49.
    Lai G, Peng J, Li J, Qiu H, Jiang J, Jiang K, Shen Y (2006) Ionic liquid functionalized silica gel: novel catalyst and fixed solvent. Tetrahedron Lett 47:6951–6953CrossRefGoogle Scholar
  50. 50.
    Gruttadauria M, Riela S, Aprile C, Meo PL, D'Anna F, Noto R (2006) Supported ionic liquids. New recyclable materials for the l-proline-catalyzed aldol reaction. Adv Synth Catal 348:82–92CrossRefGoogle Scholar
  51. 51.
    Yang Y, Beele B, Bluemel J (2008) Easily immobilized di- and tetraphosphine linkers: rigid scaffolds that prevent interactions of metal complexes with oxide supports. J Am Chem Soc 130:3771–3773CrossRefGoogle Scholar
  52. 52.
    Tundo P, Venturello P (1980) Silica gel supported phosphonium salts as micellar and phase-transfer catalysts. Tetrahedron Lett 21:2581–2584CrossRefGoogle Scholar
  53. 53.
    Tundo P, Venturello P (1979) Synthesis, catalytic activity, and behavior of phase-transfer catalysts supported on silica gel. Strong influence of substrate adsorption on the polar polymeric matrix on the efficiency of the immobilized phosphonium salts. J Am Chem Soc 101:6606–6613CrossRefGoogle Scholar
  54. 54.
    Tundo P (1977) Silica gel as a polymeric support for phase-transfer catalysts. J Chem Soc Chem Commun 18:641–642CrossRefGoogle Scholar
  55. 55.
    Modrogan E, Valkenberg MH, Hoelderich WF (2009) Phenol alkylation with isobutene—influence of heterogeneous Lewis and/or Bronsted acid sites. J Catal 261:177–187CrossRefGoogle Scholar
  56. 56.
    Takahashi T, Watahiki T, Kitazume S, Yasuda H, Sakakura T (2006) Synergistic hybrid catalyst for cyclic carbonate synthesis: remarkable acceleration caused by immobilization of homogeneous catalyst on silica. Chem Commun (Cambridge, UK) 15:1664–1666CrossRefGoogle Scholar
  57. 57.
    Bristow PA (1976) Liquid chromatography in practice. HETP, Handforth, pp 32–38Google Scholar
  58. 58.
    Sommer J, Yang Y, Rambow D, Bluemel J (2004) Immobilization of phosphines on silica: identification of byproducts via 31P CP/MAS studies of model alkyl-, aryl-, and ethoxyphosphonium salts. Inorg Chem 43:7561–7563CrossRefGoogle Scholar
  59. 59.
    Hampe EM, Rudkevich DM (2003) Exploring reversible reactions between CO2 and amines. Tetrahedron 59:9619–9625CrossRefGoogle Scholar
  60. 60.
    Strubinger JR, Song H, Parcher JF (1991) High-pressure phase distribution isotherms for supercritical fluid chromatographic systems. 1. Pure carbon dioxide. Anal Chem 63:98–103CrossRefGoogle Scholar
  61. 61.
    Strubinger JR, Song H, Parcher JF (1991) High-pressure phase distribution isotherms for supercritical fluid chromatographic systems. 2. Binary isotherms of carbon dioxide and methanol. Anal Chem 63:104–108CrossRefGoogle Scholar
  62. 62.
    Zheng J, Glass T, Taylor LT, Pinkston JD (2005) Study of the elution mechanism of sodium aryl sulfonates on bare silica and a cyano bonded phase with methanol-modified carbon dioxide containing an ionic additive. J Chromatogr A 1090:155–164CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jonathan Smuts
    • 1
  • Eranda Wanigasekara
    • 1
  • Daniel W. Armstrong
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonUSA

Personalised recommendations