Analytical and Bioanalytical Chemistry

, Volume 400, Issue 2, pp 625–634 | Cite as

Adaptive wavelet transform suppresses background and noise for quantitative analysis by Raman spectrometry

  • Da Chen
  • Zhiwen Chen
  • Edward GrantEmail author
Original Paper


Discrete wavelet transform (DWT) provides a well-established means for spectral denoising and baseline elimination to enhance resolution and improve the performance of calibration and classification models. However, the limitation of a fixed filter bank can prevent the optimal application of conventional DWT for the multiresolution analysis of spectra of arbitrarily varying noise and background. This paper presents a novel methodology based on an improved, second-generation adaptive wavelet transform (AWT) algorithm. This AWT methodology uses a spectrally adapted lifting scheme to generate an infinite basis of wavelet filters from a single conventional wavelet, and then finds the optimal one. Such pretreatment combined with a multivariate calibration approach such as partial least squares can greatly enhance the utility of Raman spectroscopy for quantitative analysis. The present work demonstrates this methodology using two dispersive Raman spectral data sets, incorporating lactic acid and melamine in pure water and in milk solutions. The results indicate that AWT can separate spectral background and noise from signals of interest more efficiently than conventional DWT, thus improving the effectiveness of Raman spectroscopy for quantitative analysis and classification.


The Raman spectrum of trace melamine in water through an adaptive wavelet prism


Adaptive wavelet transform Multivariate quantitative analysis Wavelet regression Baseline compensation Denoising Raman spectroscopy 



This work was supported by British Columbia Innovation Council and Natural Sciences and Engineering Research Council of Canada.


  1. 1.
    Macleod MA, Matousek P (2008) Appl Spectrosc 62:291A–304ACrossRefGoogle Scholar
  2. 2.
    Bell SEJ, Sirimuthu NMS (2008) Chem Soc Rev 37:1012–1024CrossRefGoogle Scholar
  3. 3.
    Zoppi A, Lofrumento C, Mendes NFC, Castellucci EM (2010) Anal Bioanal Chem 397:841–849CrossRefGoogle Scholar
  4. 4.
    Alajtal AI, Edwards HGM, Scowen IJ (2010) Anal Bioanal Chem 397:215–221CrossRefGoogle Scholar
  5. 5.
    Romero-Torres S, Perez-Ramos JD, Morris KR, Grant ER (2006) J Pharmaceut Biomed Anal 41:811–819CrossRefGoogle Scholar
  6. 6.
    Virkler K, Lednev IK (2010) Anal Bioanal Chem 396:525–534CrossRefGoogle Scholar
  7. 7.
    Balabin RM, Safieva RZ (2007) J Near Infrared Spectrosc 15:343–349CrossRefGoogle Scholar
  8. 8.
    Balabin RM, Safieva RZ (2008) Fuel 87:2745–2752CrossRefGoogle Scholar
  9. 9.
    Sarraguça MC, Paulo A, Alves MM, Dias AMA, Lopes JA, Ferreira EC (2009) Anal Bioanal Chem 395:1159–1166CrossRefGoogle Scholar
  10. 10.
    Balabin RM, Safieva RZ, Lomakina EI (2010) Anal Chim Acta 671:27–35CrossRefGoogle Scholar
  11. 11.
    Camerlingo C, Zenone F, Gaeta GM, Riccio R, Lepore M (2006) Meas Sci Technol 17:298–303CrossRefGoogle Scholar
  12. 12.
    Hu YG, Jiang T, Shen AG, Li W, Wang XP, Hu JM (2007) Chemometr Intell Lab Syst 85:94–101CrossRefGoogle Scholar
  13. 13.
    Chen D, Hu B, Shao XG, Su QD (2004) Anal Bioanal Chem 379:143–148CrossRefGoogle Scholar
  14. 14.
    Motz JT, Gandhi SJ, Scepanovic OR, Haka AS, Kramer JR, Dasari RR, Feld MS (2005) J Biomed Opt 10:031113CrossRefGoogle Scholar
  15. 15.
    Schulze G, Jirasek A, Yu MML, Lim A, Turner RFB, Blades MW (2005) Appl Spectrosc 59:545–574CrossRefGoogle Scholar
  16. 16.
    Chen D, Shao SG, Hu B, Su QD (2004) Anal Chim Acta 511:37–45CrossRefGoogle Scholar
  17. 17.
    Donald D, Coomans D, Everingham Y, Cozzolino D, Gishen M, Hancock T (2006) Chemometr Intell Lab Syst 82:122–129CrossRefGoogle Scholar
  18. 18.
    Cai TT, Zhang DM, Ben-Amotz D (2001) Appl Spectrosc 55:1124–1130CrossRefGoogle Scholar
  19. 19.
    Tan HW, Brown SD (2002) J Chemometr 16:228–240CrossRefGoogle Scholar
  20. 20.
    Wang YP, Wang Y, Spencer P (2006) Appl Spectrosc 60:826–832CrossRefGoogle Scholar
  21. 21.
    Balabin RM, Safieva RZ, Lomakina EI (2008) Chemometr Intell Lab Syst 93:58–62CrossRefGoogle Scholar
  22. 22.
    Garkani-Nejad Z, Rashidi-Nodeh H (2010) Electrochim Acta 55:2597–2605CrossRefGoogle Scholar
  23. 23.
    Donald D, Everingham Y, Coomans D (2005) Chemometr Intell Lab Syst 77:32–42Google Scholar
  24. 24.
    Eriksson L, Trygg J, Johansson E, Bro R, Wold S (2000) Anal Chim Acta 420:181–195CrossRefGoogle Scholar
  25. 25.
    Coelho CJ, Galvão RKH, Araujo MCU, Pimentel MF, Da Silva EC (2003) Chemometr Intell Lab Syst 66:205–217Google Scholar
  26. 26.
    Luo GY (2006) Int J Remote Sens 27:5003–5025CrossRefGoogle Scholar
  27. 27.
    Sweldens W (1996) Appl Comput Harmon Anal 3:186–200CrossRefGoogle Scholar
  28. 28.
    Sweldens W (1998) SIAM J Math Anal 29:511–546CrossRefGoogle Scholar
  29. 29.
    Daubechies I, Sweldens W (1998) J Fourier Anal Appl 4:247–269CrossRefGoogle Scholar
  30. 30.
    Mallat S (1998) A wavelet tour of signal processing. Academic, San Diego, pp 273–281Google Scholar
  31. 31.
    Claypoole RL, Davis GM, Sweldens W, Baraniuk RG (2003) IEEE Trans Image Process 12:1449–1459CrossRefGoogle Scholar
  32. 32.
    Liu Y, Ngan KN (2008) IEEE Trans Image Process 17:500–511CrossRefGoogle Scholar
  33. 33.
    Song SD, Zhou CK, Hepburn DM, Zhang GB, Michel M (2007) IEEE Trans Dielectr Electr Insul 14:1531–1537CrossRefGoogle Scholar
  34. 34.
    Helland IS, Naes T, Isaksson T (1995) Chemometr Intell Lab Syst 29:233–241CrossRefGoogle Scholar
  35. 35.
    Gorry PA (1990) Anal Chem 62:570–573CrossRefGoogle Scholar
  36. 36.
    Liang YZ, Fang KT, Xu QS (2001) Chemometr Intell Lab Syst 58:43–57CrossRefGoogle Scholar
  37. 37.
    Mittermary CR, Tan HW, Brown SD (2001) Appl Spectrosc 55:827–833CrossRefGoogle Scholar
  38. 38.
    Liu ZC, Cai WS, Shao XG (2009) Analyst 134:261–266CrossRefGoogle Scholar
  39. 39.
    Gassanas G, Kister G, Fabrègue E, Morssli M, Bardet L (1993) Spectrochim Acta 49:271–279CrossRefGoogle Scholar
  40. 40.
    Balabin RM, Safieva RZ, Lomakina EI (2007) Chemometr Intell Lab Syst 88:183–188CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Precision Measuring Technology and InstrumentsTianjin UniversityTianjinChina
  2. 2.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations