Analytical and Bioanalytical Chemistry

, Volume 400, Issue 2, pp 483–492 | Cite as

Supramolecular complexes of quantum dots and a polyamidoamine (PAMAM)-folate derivative for molecular imaging of cancer cells

  • Daniela A. Geraldo
  • Esteban F. Duran-Lara
  • Daniel Aguayo
  • Raul E. Cachau
  • Jaime Tapia
  • Rodrigo Esparza
  • Miguel J. Yacaman
  • Fernando Danilo Gonzalez-Nilo
  • Leonardo S. Santos
Original Paper

Abstract

Polyamidoamine (PAMAM) dendrimers and water-soluble 3-mercaptopropionic acid (MPA)-capped CdSe quantum dots (QDs) were combined to produce a new gel containing supramolecular complexes of QDs/PAMAM dendrimers. The formation of the QDs/PAMAM supramolecular complexes was confirmed by high resolution electron microscopy and Fourier transform infrared (FTIR) analyses. Molecular dynamics simulations corroborated the structure of the new QDs/PAMAM-based supramolecular compound. Finally, on the basis of the prominent fluorescent properties of the supramolecular complexes, PAMAM dendrimer was functionalized with folic acid to produce a new QDs/PAMAM-folate derivative that showed an efficient and selective performance as a marker for gastric cancer cells.

Figure

The new QDs/PAMAM-folate derivative (left) is a selective marker for imaging of cancer cells as illustrated by the fluorescence image of human stomach adenocarcinoma (AGS) cells with internalized marker (right)

Keywords

Quantum dots PAMAM dendrimers Supramolecular complexes Transmission electron microscopy (TEM) Molecular dynamics (MD) simulations Gastric cancer cells 

Notes

Acknowledgements

D.A.G. and L.S.S. thank FONDECYT (Postdoctoral Grant 3100037), Proyecto Anillo Científico ACT/24 (F.D.G.N.), and University of Texas at San Antonio (M.J.Y.) for supporting the research activity. This work has been funded in part with funds from the NCI-NIH (Contract No. HHSN261200800001E). The contents of this publication do not necessarily reflect the views or policies of the DHHS, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

References

  1. 1.
    Tomalia DA (2005) Dendrons/dendrimers. The convergence of quantized dendritic building blocks/architectures for applications in nanotechnology. Chim Oggi 23:41–45Google Scholar
  2. 2.
    Kapitonov AM, Stupak AP, Gaponenko SV, Petrov EP, Rogach AL, Eychmuller A (1999) Luminescence properties of thiol-stabilized CdTe nanocrystals. J Phys Chem B 103:10109–10113CrossRefGoogle Scholar
  3. 3.
    Yu WW, Chang E, Drezek R, Colvin VL (2006) Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 348:781–786CrossRefGoogle Scholar
  4. 4.
    Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732CrossRefGoogle Scholar
  5. 5.
    Hild WA, Breunig M, Goepferich A (2008) Quantum dots - nano-sized probes for the exploration of cellular and intracellular targeting. Eur J Pharm Biopharm 68:153–168CrossRefGoogle Scholar
  6. 6.
    Yu GH, Liang JG, He ZK, Sun MX (2006) Quantum dot-mediated detection of gamma-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. Chem Biol 13:723–731CrossRefGoogle Scholar
  7. 7.
    Kim BYS, Jiang W, Oreopoulos J, Yip CM, Rutka JT, Chan WCW (2008) Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets. Nano Lett 8:3887–3892CrossRefGoogle Scholar
  8. 8.
    Medintz IL, Mattoussi H, Clapp AR (2008) Potential clinical applications of quantum dots. Int J Nanomed 3:151–167Google Scholar
  9. 9.
    Grayson SM, Frechet JMJ (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev 101:3819–3867CrossRefGoogle Scholar
  10. 10.
    Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6:427–436CrossRefGoogle Scholar
  11. 11.
    Chen W, Tomalia DA, Thomas JL (2000) Unusual pH-dependent polarity changes in PAMAM dendrimers: evidence for pH-responsive conformational changes. Macromolecules 33:9169–9172CrossRefGoogle Scholar
  12. 12.
    Liu Y, Bryantsev VS, Diallo MS, Goddard WA (2009) PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc 131:2798–2799CrossRefGoogle Scholar
  13. 13.
    Singh P, Gupta U, Asthana A, Jain NK (2008) Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug Chem 19:2239–2252CrossRefGoogle Scholar
  14. 14.
    Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190CrossRefGoogle Scholar
  15. 15.
    Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: NBM 6:9–24, and references cited thereinGoogle Scholar
  16. 16.
    Pan J, Feng S-S (2009) Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials 30:1176–1183CrossRefGoogle Scholar
  17. 17.
    Leamon CP, Low PS (1991) Delivery of macromolecules into living cells-a method that exploits folate receptor endocytosis. Proc Natl Acad Sci U S A 88:5572–5576CrossRefGoogle Scholar
  18. 18.
    Turek JJ, Leamon CP, Low PS (1993) Endocytosis of folate-protein conjugates-ultrastructural-localization in Kb cells. J Cell Sci 106:423–430Google Scholar
  19. 19.
    Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon A (2007) Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles. J Control Release 124:28–34CrossRefGoogle Scholar
  20. 20.
    Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN (2005) Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127:11364–11371CrossRefGoogle Scholar
  21. 21.
    Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV (2007) The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials 28:504–512CrossRefGoogle Scholar
  22. 22.
    Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106:7177–7185CrossRefGoogle Scholar
  23. 23.
    Shavel A, Gaponik N, Eychmuller A (2006) Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment. J Phys Chem B 110:19280–19284CrossRefGoogle Scholar
  24. 24.
    Myc A, Patri AK, Baker JR (2007) Dendrimer-based BH3 conjugate that targets human carcinoma cells. Biomacromolecules 8:2986–2989CrossRefGoogle Scholar
  25. 25.
    Chiba K, Kawakami K, Tohyama K (1998) Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol In Vitro 12:251–258CrossRefGoogle Scholar
  26. 26.
    Liu JA, Li HB, Wang W, Xu HB, Yang XL, Liang JG, He ZK (2006) Use of ester-terminated polyamidoamine dendrimers for stabilizing quantum dots in aqueous solutions. Small 2:999–1002CrossRefGoogle Scholar
  27. 27.
    Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860CrossRefGoogle Scholar
  28. 28.
    Schaller RD, Sykora M, Pietryga JM, Klimov VI (2006) Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett 6:424–429CrossRefGoogle Scholar
  29. 29.
    Huang J, Huang Z, Yang Y, Zhu H, Lian T (2010) Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. J Am Chem Soc 132:4858–4864CrossRefGoogle Scholar
  30. 30.
    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefGoogle Scholar
  31. 31.
    Idowu M, Lamprecht E, Nyokong T (2008) Interaction of water-soluble thiol capped CdTe quantum dots and bovine serum albumin. J Photochem Photobiol A 198:7–12CrossRefGoogle Scholar
  32. 32.
    Yu WW, Falkner JC, Shih BS, Colvin VL (2004) Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem Mater 16:3318–3322CrossRefGoogle Scholar
  33. 33.
    Dai QQ, Li DM, Jiang S, Chen HY, Wang Y, Kan SH, Liu BB, Cui QL, Zou GT (2006) Synthesis of monodisperse CdSe nanocrystals directly open to air: monomer reactivity tuned by the selenium ligand. J Cryst Growth 292:14–18CrossRefGoogle Scholar
  34. 34.
    Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704CrossRefGoogle Scholar
  35. 35.
    Porcar L, Liu Y, Verduzco R, Hong KL, Butler PD, Magid LJ, Smith GS, Chen WR (2008) Structural investigation of PAMAM dendrimers in aqueous solutions using small-angle neutron scattering: effect of generation. J Phys Chem B 112:14772–14778CrossRefGoogle Scholar
  36. 36.
    Prosa TJ, Bauer BJ, Amis EJ, Tomalia DA, Scherrenberg R (1997) A SAXS study of the internal structure of dendritic polymer systems. J Polym Sci Polym Phys 35:2913–2924CrossRefGoogle Scholar
  37. 37.
    Maiti PK, Cagin T, Wang GF, Goddard WA (2004) Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules 37:6236–6254CrossRefGoogle Scholar
  38. 38.
    Yong KT, Ding H, Roy I, Law WC, Bergey EJ, Maitra A, Prasad PN (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3:502–510CrossRefGoogle Scholar
  39. 39.
    Lichtensteiger CA, Cheevers WP, Davis WC (1993) Cd8+ cytotoxic T-lymphocytes against antigenic variants of caprine arthritis-encephalitis virus. J Gen Virol 74:2111–2116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Daniela A. Geraldo
    • 1
  • Esteban F. Duran-Lara
    • 1
  • Daniel Aguayo
    • 2
  • Raul E. Cachau
    • 3
  • Jaime Tapia
    • 1
  • Rodrigo Esparza
    • 4
  • Miguel J. Yacaman
    • 4
  • Fernando Danilo Gonzalez-Nilo
    • 2
  • Leonardo S. Santos
    • 1
  1. 1.Laboratory of Asymmetric Synthesis, Chemistry Institute of Natural ResourcesUniversidad de TalcaTalcaChile
  2. 2.Center for Bioinformatics and Molecular SimulationsUniversidad de TalcaTalcaChile
  3. 3.Science Applications International Corporation (SAIC)-Frederick, Inc.National Cancer InstituteFrederickUSA
  4. 4.Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations