Analytical and Bioanalytical Chemistry

, Volume 400, Issue 2, pp 449–458 | Cite as

An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air

  • Tuula Larson
  • Conny Östman
  • Anders ColmsjöEmail author
Original Paper


The monitoring of radioactive xenon isotopes is one of the principal methods for the detection of nuclear explosions in order to identify clandestine nuclear testing. In this work, a miniaturized, multiple-oven, six-column, preparative gas chromatograph was constructed in order to isolate trace quantities of radioactive xenon isotopes from ambient air, utilizing nitrogen as the carrier gas. The multidimensional chromatograph comprised preparative stainless steel columns packed with molecular sieves, activated carbon, and synthetic carbon adsorbents (e.g., Anasorb®-747 and Carbosphere®). A combination of purification techniques—ambient adsorption, thermal desorption, back-flushing, thermal focusing, and heart cutting—was selectively optimized to produce a well-defined xenon peak that facilitated reproducible heart cutting and accurate quantification. The chromatographic purification of a sample requires approximately 4 h and provides complete separation of xenon from potentially interfering components (such as water vapor, methane, carbon dioxide, and radon) with recovery and accuracy close to 100%. The preparative enrichment process isolates and concentrates a highly purified xenon gas fraction that is suitable for subsequent ultra-low-level γ-, ß/γ-spectroscopic or high-resolution mass spectrometric measurement (e.g., to monitor the gaseous fission products of nuclear explosions at remote locations). The Xenon Processing Unit is a free-standing, relatively lightweight, and transportable system that can be interfaced to a variety of sampling and detection systems. It has a relatively inexpensive, rugged, and compact modular (19-inch rack) design that provides easy access to all parts for maintenance and has a low power requirement.


Preparative enrichment of xenon Noble gas Radioxenon Stable xenon Radon separation Carbon adsorbents CTBT IMS Nuclear safeguards 



The authors would like to thank FOI, Swedish Defence Research Agency, Nuclear Weapons Issues and Detection, for its financial support for this research and for the loan of the radon monitor. The manufacture of columns by FOI workshops is gratefully acknowledged. The authors would like to thank Gammadata Instrument AB for the loan of the NaI(Tl)-detector, associated electronic equipment, software, a lead shield and radioxenon gas. The provision of radioxenon gas by Karolinska University Hospital is also appreciated.


  1. 1.
  2. 2.
    Saey P, Esarda bulletin No. 36, Prep Com CTBTO, Vienna, AustriaGoogle Scholar
  3. 3.
    Saey P, DeGeer L-E (2005) Appl Radiat Isotopes 63:765–773CrossRefGoogle Scholar
  4. 4.
    Matthews K, De Geer L-E 263:235-240Google Scholar
  5. 5.
    Kalinowski M, Pistner C (2006) J Environ Radioact 88:215–235CrossRefGoogle Scholar
  6. 6.
    Kalinowski M, Tuma M (2009) J Environ Radioact 100:58–70CrossRefGoogle Scholar
  7. 7.
    Saey P (2009) J Environ Radioact 100:396–406CrossRefGoogle Scholar
  8. 8.
    Aregbe Y, Mayer K, Valkiers S, De Bièvre P (1997) Fres J Anal Chem 358:533–535CrossRefGoogle Scholar
  9. 9.
    Ringbom A, Larson T, Axelsson A, Elmgren K, Johansson C (2003) Nucl Instrum Methods Phys Res A 508:542–553CrossRefGoogle Scholar
  10. 10.
    Auer A, Axelsson A, Blanchard X, Bowyer T, Brachet G, Bulowski I, Dubasov Y, Elmgren K, Fontaine J, Harms W, Hayes J, Heimbigner T, McIntyre J, Panisko M, Popov Y, Ringbom A, Sartorius H, Schmid S, Schulze J, Schlosser C, Taffary T, Weiss W, Wernsperger B (2004) Appl Radiat Isotopes 60:863–877CrossRefGoogle Scholar
  11. 11.
    Schulze J, Auer M, Werzi R (2000) Appl Radiat Isotopes 53:23–30CrossRefGoogle Scholar
  12. 12.
    Fontaine J-P, Pointurier F, Blanchard X, Taffary T (2004) J Environ Radioact 72:129–135CrossRefGoogle Scholar
  13. 13.
    Wernsperger B, Schlosser C (2004) Radiat Phys Chem 71:775–779CrossRefGoogle Scholar
  14. 14.
    Le Petit G, Armand P, Brachet G, Taffary T, Fontaine J, Achim P, Blanchard X, Piwowarczyk J, Pointurier F (2008) J Radioanal Nucl Chem 276:391–398CrossRefGoogle Scholar
  15. 15.
    Stocki T, Blanchard X, D’Amours R, Ungar R, Fontaine J, Sohier M, Bean M, Taffary T, Racine J, Tracy B, Brachet G, Jean M, Meyerhof D (2005) J Environ Radioact 80:305–326CrossRefGoogle Scholar
  16. 16.
    Stocki T, Armand P, Heinrich P, Ungar R, D’Amours R, Korpach E, Bellivier A, Taffary T, Malo A, Bean M, Hoffman I, Jean M (2008) J Environ Radioact 99:1775–1788CrossRefGoogle Scholar
  17. 17.
    Bowyer T, Schlosser C, Abel K, Auer M, Hayes J, Heimbigner T, McIntyre J, Panisko M, Reeder P, Sartorius H, Schultze J, Weiss W (2002) J Environ Radioact 59:139–151CrossRefGoogle Scholar
  18. 18.
    McIntyre J, Abel K, Bowyer T, Hayes J, Heimbigner T, Panisko M, Reeder P, Thompson R (2001) J Radioanal Nucl Chem 248:629–635CrossRefGoogle Scholar
  19. 19.
    Bowyer T, Abel K, Hubbard C, Panisko M, Reeder P, Thompson R, Warner R (1999) J Radioanal Nucl Chem 240:109–122CrossRefGoogle Scholar
  20. 20.
    Bowyer T, Abel K, Hubbard C, McKinnon A, Panisko M, Perkins R, Reeder P, Thompson R, Warner R (1998) J Radioanal Nucl Chem 235:77–81CrossRefGoogle Scholar
  21. 21.
    Bowyer T, Abel K, Hensley W, Panisko M, Perkins R (1997) J Environ Radioact 37:143–153CrossRefGoogle Scholar
  22. 22.
    Stockburger H, Sartorius H, Sittkus A (1977) Z Naturforsch 32a:1249–1253Google Scholar
  23. 23.
    Anasorb®-747 Publication 1385 Rev 0401 SKC Inc., USAGoogle Scholar
  24. 24.
    Carbosphere® Data Sheet D5680 Alltech Associates, Inc. IL, USAGoogle Scholar
  25. 25.
    Grob R (1995) Modern practice of gas chromatography 3rd editionGoogle Scholar
  26. 26.
    West R, Astle T, Beyer W 1986-1987 CRC Handbook of Chemistry and Physics 67th edition. CRC Press, IncGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Analytical ChemistryStockholm UniversityStockholmSweden

Personalised recommendations