Advertisement

Analytical and Bioanalytical Chemistry

, Volume 400, Issue 2, pp 493–502 | Cite as

Gas-chromatography mass-spectrometry determination of phthalic acid in human urine as a biomarker of folpet exposure

  • Aurélie Berthet
  • Michèle Berode
  • Michèle BouchardEmail author
Original Paper

Abstract

Agricultural workers are exposed to folpet, but biomonitoring data are limited. Phthalimide (PI), phthalamic acid (PAA), and phthalic acid (PA) are the ring metabolites of this fungicide according to animal studies, but they have not yet been measured in human urine as metabolites of folpet, only PA as a metabolite of phthalates. The objective of this study was thus to develop a reliable gas chromatography–tandem mass spectrometry (GC–MS) method to quantify the sum of PI, PAA, and PA ring-metabolites of folpet in human urine. Briefly, the method consisted of adding p-methylhippuric acid as an internal standard, performing an acid hydrolysis at 100 °C to convert ring-metabolites into PA, purifying samples by ethyl acetate extraction, and derivatizing with N,O-bis(trimethylsilyl)trifluoro acetamide prior to GC–MS analysis. The method had a detection limit of 60.2 nmol/L (10 ng/mL); it was found to be accurate (mean recovery, 97%), precise (inter- and intra-day percentage relative standard deviations <13%), and with a good linearity (R 2 > 0.98). Validation was conducted using unexposed peoples urine spiked at concentrations ranging from 4.0 to 16.1 μmol/L, along with urine samples of volunteers dosed with folpet, and of exposed workers. The method proved to be (1) suitable and accurate to determine the kinetic profile of PA equivalents in the urine of volunteers orally and dermally administered folpet and (2) relevant for the biomonitoring of exposure in workers.

Figure

Representative chromatograms of PA equivalents (trimethylsilyl phthalic acid or TMS-PA) in the urine of a volunteer orally dosed with folpet (a) and of a worker following folpet spraying (b; TMS-IS is the derivatized internal standard)

Keywords

Phthalic acid Phthalamic acid Folpet Human urine Biological monitoring 

Notes

Acknowledgments

We thank Gregory Plateel for his assistance in method adjustment and Patricia Stephan, Christine Arnoux, and Christine Kohler for their technical assistance. The project was funded by the ANSES (Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail). Aurélie Berthet also received a scholarship from the Institut de recherche Robert-Sauvé en santé et sécurité du travail du Québec.

References

  1. 1.
    Burroughs GE and Hora J (1982) Health hazard evaluation report. Report No. HETA-80-147-1076 Calhio Chemical Company, Perry, Ohio. National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OhioGoogle Scholar
  2. 2.
    Whyatt RM, Barr DB, Camann DE, Kinney PL, Barr JR, Andrews HF, Hoepner LA, Garfinkel R, Hazi Y, Reyes A, Ramirez J, Cosme Y, Perera FP (2003) Environ Health Perspect 111:749–756CrossRefGoogle Scholar
  3. 3.
    Canal-Raffin M, Receveur M, Martinez B, Titier K, Ohayon C, Baldi I, Molimard M, Moore N, Brochard P (2008) J Chromatogr B Anal Technol Biomed Life Sci 865:106–113Google Scholar
  4. 4.
    Chasseaud L, Hawkins DR, Franklin ER, and Weston KT (1974) The metabolic fate of 14C-Folpet (Phaltan) in the rat (Folpet). Unpublished report No CHR1-74482. Huntingdon Research Centre Ltd, Huntingdon, EnglandGoogle Scholar
  5. 5.
    Chasseaud L, Wood SG, Cheng K, Hall M, Fitzpatrick K, Iqbal S, and Barlett A (1991) Metabolic fate of 14C-folpet in Sprague-Dawley rats. Unpublished report No HRC/MBS 41-91499. Huntingdon Research Centre Ltd, Huntingdon, EnglandGoogle Scholar
  6. 6.
    Gordon EB, Ehrlich T, Mobley S, Williams M (2001) Toxicol Metods 11:209–223Google Scholar
  7. 7.
    Gordon EB (2010) Captan and folpet. In: Krieger RI (ed) Hayes handbook of pesticide toxicology, 3rd edn. Elsevier, New YorkGoogle Scholar
  8. 8.
    Chasseaud L (1980) (Carbonyl-14C) Folpet metabolism in rats. Unpublished report No DPBP 51202. Huntingdon Research Centre Ltd, Huntingdon, EnglandGoogle Scholar
  9. 9.
    Bray HG, Hybs Z, Thorpe WV (1951) Biochem J 48:192–199Google Scholar
  10. 10.
    Selva A, Traldi P, Ventura P, Valle VD (1982) Org Mass Spectrom 17:524–528CrossRefGoogle Scholar
  11. 11.
    Selva A, Traldi P, Ventura P, Servadio V (1983) Org Mass Spectrom 18:278–281CrossRefGoogle Scholar
  12. 12.
    Albro PW, Jordan S, Corbett JT, Schroeder JL (1984) Anal Chem 56:247–250CrossRefGoogle Scholar
  13. 13.
    Lim DS, Shin BS, Yoo SD, Kim HS, Kwack SJ, Alm MY, Lee BM (2007) J Toxicol Environ Health A 70:1344–1349CrossRefGoogle Scholar
  14. 14.
    Mettang T, Alscher DM, Pauli-Magnus C, Dunst R, Kuhlmann U, Rettenmeier AW (1999) Adv Perit Dial 15:229–233Google Scholar
  15. 15.
    Samandar E, Silva MJ, Reidy JA, Needham LL, Calafat AM (2009) Environ Res 109:641–646CrossRefGoogle Scholar
  16. 16.
    Williams DT, Blanchfield BJ (1974) Bull Environ Contam Toxicol 12:109–112CrossRefGoogle Scholar
  17. 17.
    Baird DD, Saldana TM, Nepomnaschy PA, Hoppin JA, Longnecker MP, Weinberg CR, Wilcox AJ (2010) J Expo Sci Environ Epidemiol 20:169–175CrossRefGoogle Scholar
  18. 18.
    Blount BC, Milgram KE, Silva MJ, Malek NA, Reidy JA, Needham LL, Brock JW (2000) Anal Chem 72:4127–4134CrossRefGoogle Scholar
  19. 19.
    Kato K, Silva MJ, Needham LL, Calafat AM (2005) Anal Chem 77:2985–2991CrossRefGoogle Scholar
  20. 20.
    Koch HM, Gonzalez-Reche LM, Angerer J (2003) J Chromatogr B Analyt Technol Biomed Life Sci 784:169–182CrossRefGoogle Scholar
  21. 21.
    Preuss R, Koch HM, Angerer J (2005) J Chromatogr B Analyt Technol Biomed Life Sci 816:269–280CrossRefGoogle Scholar
  22. 22.
    Silva MJ, Slakman AR, Reidy JA, Preau JL, Herbert AR, Samandar E, Needham LL, Calafat AM (2004) J Chromatogr B Analyt Technol Biomed Life Sci 805:161–167CrossRefGoogle Scholar
  23. 23.
    Silva MJ, Samandar E, Preau JL Jr, Reidy JA, Needham LL, Calafat AM (2007) J Chromatogr B Analyt Technol Biomed Life Sci 860:106–112CrossRefGoogle Scholar
  24. 24.
    Pfaffli P (1986) Int Arch Occup Environ Health 58:209–216CrossRefGoogle Scholar
  25. 25.
    Jonsson BAG, Richthoff J, Rylander L, Giwercman A, Hagmar L (2005) Epidemiology 16:487–493CrossRefGoogle Scholar
  26. 26.
    Vermeulen R, Jonsson BA, Lindh CH, Kromhout H (2005) Int Arch Occup Environ Health 78:663–669CrossRefGoogle Scholar
  27. 27.
    Frederiksen H, Skakkebaek NE, Andersson AM (2007) Mol Nutr Food Res 51:899–911CrossRefGoogle Scholar
  28. 28.
    Hines CJ, Hopf NBN, Deddens JA, Calafat AM, Silva MJ, Grote AA, Sammons DL (2009) Ann Occup Hyg 53:1–17CrossRefGoogle Scholar
  29. 29.
    Latini G (2005) Clin Chim Acta 361:20–29CrossRefGoogle Scholar
  30. 30.
    Meeker JD, Sathyanarayana S, Swan SH (2009) Philos Trans R Soci Lond B Biol Sci 364:2097–2113CrossRefGoogle Scholar
  31. 31.
    Wormuth M, Scheringer M, Vollenweider M, Hungerbuhler K (2006) Risk Anal 26:803–824CrossRefGoogle Scholar
  32. 32.
    Berthet A, Bouchard M, and Danuser D (2011) Tokicokinetics of captan and folpet biomarkers in orally exposed volunteers. J Appl Toxicol. In press.Google Scholar
  33. 33.
    Berthet A, Bouchard M, and Vernez D (2011) Tokicokinetics of captan and folpet biomarkers in dermally exposed volunteers. J Appl Toxicol. In press.Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Aurélie Berthet
    • 1
    • 2
  • Michèle Berode
    • 1
  • Michèle Bouchard
    • 2
    Email author
  1. 1.Institute for Work and HealthLausanneSwitzerland
  2. 2.Department of Environmental and Occupational Health, School of Public HealthUniversité de MontréalMontrealCanada

Personalised recommendations