Advertisement

Analytical and Bioanalytical Chemistry

, Volume 400, Issue 2, pp 613–623 | Cite as

Comprehensive study of condensed tannins by ESI mass spectrometry: average degree of polymerisation and polymer distribution determination from mass spectra

  • Laetitia MoulsEmail author
  • Jean-Paul Mazauric
  • Nicolas Sommerer
  • Hélène Fulcrand
  • Gérard Mazerolles
Original Paper

Abstract

The determination of the molecular mass distribution of tannins is still a challenge. To elucidate it, mass spectrometry is potentially interesting, but many previous studies have highlighted that the mass spectra of a tannin fraction do not always reflect the actual abundance of different chain lengths. To clarify the potentialities offered by the MS approach, a comprehensive study involving different tannin fractions analysed under different conditions was conducted with an electrospray ionization (ESI) source. This study allowed optimised ESI-MS conditions to be established for analysing tannins but also it outlines the limits of detection encountered. If the detection of high molecular weight tannins seems difficult or even impossible, the spectral distortions brought about by this limitation are not totally related to the sole average degree of polymerisation of the tannin fraction studied but greatly depend on its polymer distribution. However, ESI-MS used under optimised conditions is a suitable method to study tannin composition of vegetable extracts which contain degree of polymerisations below 26.

Keywords

Tannins Polyphenols Electrospray ionisation–mass spectrometry (ESI-MS) Degree of polymerisation Polymer distribution Chemometrics 

Supplementary material

216_2011_4751_MOESM1_ESM.pdf (499 kb)
ESM 1 (PDF 499 kb)

References

  1. 1.
    Fulcrand H, Guyot S, Le Roux E, Remy S, Souquet J-M, Doco T, Cheynier V (1999) In: Gross (ed) Plant polyphenols 2: chemistry, biology, pharmacology, ecology. Springer, Berlin, pp 223–244Google Scholar
  2. 2.
    Zanchi D, Konarev PV, Tribet C, Baron A, Svergun DI, Guyot S (2009) Rigidity, conformation, and solvation of native and oxidized tannin macromolecules in water-ethanol solution. J Chem Phys 130:245103CrossRefGoogle Scholar
  3. 3.
    Haslam E, Lilley TH (1988) Natural astringency in foodstuffs – a molecular interpretation. Crit Rev Food Sci Nutr 27:1–40CrossRefGoogle Scholar
  4. 4.
    Cao G, Russell RM, Lischner N, Prior RL (1998) Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr 128:2383–2390Google Scholar
  5. 5.
    Young JF, Nielsen SE, Haraldsdottir J, Daneshvar B, Lauridsen ST, Knuthsen P, Crozie A, Sandstrom B, Dragsted LO (1999) Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status. Am J Clin Nutr 69:87–94Google Scholar
  6. 6.
    Rein D, Lotito S, Holt RR, Keen CL, Schmitz HH, Fraga CG (2000) Epicatechin in human plasma: In vivo determination and effect of chocolate consumption on plasma oxidation status. J Nutr 130:2109S–2114SGoogle Scholar
  7. 7.
    Koga T, Meydani M (2001) Effect of plasma metabolites of (+)-catechin and quercetin on monocyte adhesion to human aortic endothelial cells. Am J Clin Nutr 73:941–948Google Scholar
  8. 8.
    Kennedy JA, Taylor AW (2003) Analysis of proanthocyanidins by high-performance gel permeation chromatography. J Chromatogr A 995:99–107CrossRefGoogle Scholar
  9. 9.
    Rigaud J, Perez-Ilzarbe J, Ricardo Da Silva JM, Cheynier V (1991) Micro method for the identification of proanthocyanidin using thiolysis monitored by high-performance liquid-chromatography. J Chromatogr 540:401–405CrossRefGoogle Scholar
  10. 10.
    Telepchack MJ (1973) New uses for molecular-size exclusion chromatography. J Chromatogr 83:125–134CrossRefGoogle Scholar
  11. 11.
    Kasai N, Nakatsubo G (2006) Size-exclusion chromatography of tea tannins and intercepting potentials of peptides for the inhibition of trypsin-caseinolytic activity by tea tannins. J Agric Food Chem 54:5149–5156CrossRefGoogle Scholar
  12. 12.
    Ikegami A, Sato A, Yamado M, Kitajuma A, Yonemori K (2005) Molecular size profiles of tannins in persimmon fruits of Japanese and Chinese pollination-constant non-astringent (PCNA)-type cultivars and their offspring revealed by size-exclusion chromatography. J Japan Soc Hort Sci 74:437–443CrossRefGoogle Scholar
  13. 13.
    Kaufman RC, Tilley M, Bean SR, Tuinstra MR (2009) Improved characterization of sorghum tannins using size-exclusion chromatography. Cereal Chem 86:369–371CrossRefGoogle Scholar
  14. 14.
    Viriot C, Scalbert A, Dupenhoat CLMH, Rolando C, Moutounet M (1994) Methylation, acetylation and gel-permeation of hydrolysable tannins. J Chromatogr A 662:77–85CrossRefGoogle Scholar
  15. 15.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for masse-spectrometry of large biomolecules. Sci 246:64–71CrossRefGoogle Scholar
  16. 16.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem 60:2299–2301CrossRefGoogle Scholar
  17. 17.
    Hammerstone JF, Lazarus SA, Mitchell AE, Rucker R, Schmitz HH (1999) Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography mass spectrometry. J Agric Food Chem 47:490–496CrossRefGoogle Scholar
  18. 18.
    Peng Z, Hayasaka Y, Iland PG, Sefton M, Hoj P, Waters EJ (2001) Quantitative analysis of polymeric procyanidins (tannins) from grape (Vitis vinifera) seeds by reverse phase high performance liquid chromatography. J Agric Food Chem 49:26–31CrossRefGoogle Scholar
  19. 19.
    Hümmer W, Schreier P (2008) Analysis of proanthocyanidins. Mol Nutr Food Res 52:1381–1398CrossRefGoogle Scholar
  20. 20.
    Taylor AW, Barofsky E, Kennedy JA, Deinzer ML (2003) Hop (Humulus lupulus L) proanthocyanidins characterized by mass spectrometry, acid catalysis, and gel permeation chromatography. J Agric Food Chem 51:4101–4110CrossRefGoogle Scholar
  21. 21.
    Ishida Y, Kuniyuki K, Goto K, Ohtani H (2005) Solid sampling technique for direct detection of condensed tannins in bark by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 19:706–710CrossRefGoogle Scholar
  22. 22.
    Ping X, Yiming L, Peng L, Cheng X (2006) Effects of adduct ions on matrix-assisted laser desorption/ionization time of flight mass spectrometry of condensed tannins: a prerequisite knowledge. Chinese J Anal Chem 34:1019–1022CrossRefGoogle Scholar
  23. 23.
    Mané C, Sommerer N, Yalcin T, Cheynier V, Cole RB, Fulcrand H (2007) Assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein-tannin complexes. Anal Chem 79:2239–2248CrossRefGoogle Scholar
  24. 24.
    Es-Safi N-E, Guyot S, Ducrot PH (2006) NMR, ESI/MS, and MALDI-TOF/MS analysis of pear juice polymeric proanthocyanidins with potent free radical scavenging activity. J Agric Food Chem 54:6969–6977CrossRefGoogle Scholar
  25. 25.
    Guyot S, Marnet N, Sanoner P, Drilleau J-F (2003) Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices. J Agric Food Chem 51:6240–6247CrossRefGoogle Scholar
  26. 26.
    Derdelinckx G, Jerumanis J (1984) Separation of malt and hop proanthocyanidins on Fractogel TSK HW-40 (S). J Chromatogr 285:231–244CrossRefGoogle Scholar
  27. 27.
    Ricardo Da Silva J, Rigaud J, Cheynier V, Cheminat A, Moutounet M (1991) Procyanidin dimers and trimers from grape seeds. Phytochem 30:1259–1264CrossRefGoogle Scholar
  28. 28.
    Guyot S, Marnet N, Drilleau J-F (2001) Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states. J Agric Food Chem 49:14–20CrossRefGoogle Scholar
  29. 29.
    Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639CrossRefGoogle Scholar
  30. 30.
    Sanoner P, Guyot S, Marnet N, Molle D, Drilleau J-F (1999) Polyphenol profiles of French cider apple varieties (Malus domestica sp). J Agric Food Chem 47:4847–4853CrossRefGoogle Scholar
  31. 31.
    Guyot S, Doco T, Souquet J-M, Moutounet M, Drilleau J-F Phytochem (1997) Characterization of highly polymerized procyanidins in cider apple (Malus sylvestris var kermerrien) skin and pulp. 44:351-357Google Scholar
  32. 32.
    Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Prior RL (2003) Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J Agric Food Chem 51:7513–7521CrossRefGoogle Scholar
  33. 33.
    Prior RL, Gu L (2005) Occurrence and biological significance of proanthocyanidins in the American diet. Phytochem 66:2264–2280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Laetitia Mouls
    • 1
    • 2
    • 3
    Email author
  • Jean-Paul Mazauric
    • 1
    • 2
    • 3
  • Nicolas Sommerer
    • 1
    • 2
    • 3
  • Hélène Fulcrand
    • 1
    • 2
    • 3
  • Gérard Mazerolles
    • 1
    • 2
    • 3
  1. 1.INRA, UMR1083MontpellierFrance
  2. 2.Montpellier SupAgro, UMR1083MontpellierFrance
  3. 3.Université Montpellier I, UMR1083MontpellierFrance

Personalised recommendations